195 research outputs found

    Comparison of mechanical ventilatory constraints between continuous and intermittent exercises in healthy prepubescent children.

    No full text
    International audienceBBackground: The aim of this study was to evaluate the occurrence and severity of mechanical ventilatory constraints in healthy prepubescent children during continuous and intermittent exercise. Methods: Twelve prepubescent children (7 - 11 years old) performed 7 exercises on a treadmill: one graded test for the determination of maximal aerobic speed (MAS), three continuous exercises (CE) at 60, 70 and 80% of MAS and three intermittent exercises (IE), alternating 15s of exercise with 15s of passive recovery, at 90, 100 and 110% of MAS. During each CE and IE, tidal flow/volume loops were plotted within a maximal flow/volume loop (MFVL) measured at rest before each exercise. Expiratory flow limitation (expFL expressed in %Vt) was defined as the part of exercise tidal volume (Vt) meeting the boundary of MFVL. Breathing strategy was estimated by measuring inspiratory capacity relative to forced vital capacity and tidal volume relative to inspiratory capacity. Other breathing pattern parameters (ventilation VE, Vt, respiratory frequency f) were continuously recorded during exercise. Results: An "intensity" effect was found for during CE (p<0.001) but not during IE (p=0.08). The increase in was predominantly assumed by an increase in f for both exercise modalities. During each exercise, several children heterogeneously experienced expFL ranging between 10 - 90%Vt. For all exercises, Vt was predominantly regulated by an increase in Vt/IC with no change in IC/FVC from rest to exercise. Finally, no significant "modality" effect was found for mechanical ventilatory constraint parameters (expFL, VT/IC and IV/FVC). Discussion: We could conclude that neither of the modalities studied induced more mechanical ventilatory constraints than the other, but that exercise intensities specific to each modality might be greater sources of exacerbation for mechanical ventilatory constraints

    Adverse effects of endocrine disruptors on the foetal testis development: focus on the phthalates.

    Get PDF
    There are great concerns about the increasing incidence of abnormalities in male reproductive function. Human sperm counts have markedly dropped and the rate of testicular cancer has clearly augmented over the past four decades. Moreover, the prevalence rates of cryptorchidism and hypospadias are also probably increasing. It has been hypothesized that all these adverse trends in male reproduction result from abnormalities in the development of the testis during foetal and neonatal life. Furthermore, many recent epidemiological, clinical and experimental data suggest that these male reproductive disorders could be due to the effects of xenobiotics termed endocrine disruptors, which are becoming more and more concentrated and prevalent in our environment. Among these endocrine disruptors, we chose to focus this review on the phthalates for different reasons: 1) they are widespread in the environment; 2) their concentrations in many human biological fluids have been measured; 3) the experimental data using rodent models suggesting a reprotoxicity are numerous and are the most convincing; 4) their deleterious effects on the in vivo and in vitro development and function of the rat foetal testis have been largely studied; 5) some epidemiological data in humans suggest a reprotoxic effect at environmental concentrations at least during neonatal life. However, the direct effects of phthalates on human foetal testis have never been explored. Thus, as we did for the rat in the 1990s, we recently developed and validated an organ culture system which allows maintenance of the development of the different cell types of human foetal testis. In this system, addition of 10-4 M MEHP (mono-2-ethylhexyl phthalate), the most produced phthalate, had no effect on basal or LH-stimulated production of testosterone, but it reduced the number of germ cells by increasing their apoptosis, without modification of their proliferation. This is the first experimental demonstration that phthalates alter the development of the foetal testis in humans. Using our organotypic culture system, we and others are currently investigating the effect of MEHP in the mouse and the rat, and it will be interesting to compare the results between these species to analyse the relevance of toxicological tests based on rodent models

    Ontogenesis of testicular function in humans.

    Get PDF
    The two major functions of the testis, steroidogenesis and gametogenesis, take place during fetal life. These two functions have been extensively studied in rodents and adult humans. However, their onset during fetal life is poorly documented in humans. In the first part of this work we presented both our experimental data and some data of literature concerning the development of the human fetal testis. In the second part of this article, using the organ culture system we previously developed, we have investigated the regulations or perturbations of fetal testis development both in rodent and human models. Our findings provide important insight into the potential role of exposure to environmental pollutants (physical factors, in particular ionizing radiation, cadmium and endocrine disruptors such as phthalates) during fetal testicular development and their potential deleterious effects on male fertility in adulthood. Our results highlight the specificity of the human model compared with rodent models

    Concerns about the widespread use of rodent models for human risk assessments of endocrine disruptors.

    Get PDF
    International audienceFetal testis is a major target of endocrine disruptors (EDs). During the last 20 years, we have developed an organotypic culture system that maintains the function of the different fetal testis cell types and have used this approach as a toxicological test to evaluate the effects of various compounds on gametogenesis and steroidogenesis in rat, mouse and human testes. We named this test rat, mouse and human fetal testis assay. With this approach, we compared the effects of six potential EDs ((mono-(2-ethylhexyl) phthalate (MEHP), cadmium, depleted uranium, diethylstilboestrol (DES), bisphenol A (BPA) and metformin) and one signalling molecule (retinoic acid (RA)) on the function of rat, mouse and human fetal testis at a comparable developmental stage. We found that the response is similar in humans and rodents for only one third of our analyses. For instance, RA and MEHP have similar negative effects on gametogenesis in the three species. For another third of our analyses, the threshold efficient concentrations that disturb gametogenesis and/or steroidogenesis differ as a function of the species. For instance, BPA and metformin have similar negative effects on steroidogenesis in human and rodents, but at different threshold doses. For the last third of our analyses, the qualitative response is species specific. For instance, MEHP and DES affect steroidogenesis in rodents, but not in human fetal testis. These species differences raise concerns about the extrapolation of data obtained in rodents to human health risk assessment and highlight the need of rigorous comparisons of the effects in human and rodent models, when assessing ED risk
    • …
    corecore