263 research outputs found

    A Survey on Cost and Profit Oriented Assembly Line Balancing

    Get PDF
    http://www.nt.ntnu.no/users/skoge/prost/proceedings/ifac2014/media/files/0866.pdfInternational audienceProblems, approaches and analytical models on assembly line balancing that deal explicitly with cost and profit oriented objectives are analysed. This survey paper serves to identify and work on open problems that have wide practical applications. The conclusions derived might give insights in developing decision support systems (DSS) in planning profitable or cost efficient assembly lines

    Minimizing setup cost for multipart production lines

    Get PDF
    http://www.usc.edu/dept/ise/caie/Checked%20Papers%20%5Bruhi%2012th%20sept%5D/word%20format%20papers/REGISTRATION%20PAID%20PAPERS%20FOR%20PROCEEDINGS/pdf/170%2014%20MINIMIZING%20SETUP%20COST%20FOR%20MULTI-PART%20PRODUCTION%20LINES.pdfInternational audienceAn industrial engineering problem is under study. It consists in optimal configuration of a multi-part production line. A line is a sequence of workstations, at which the manufacturing operations at each workstation are executed in parallel. Parallel execution of operations is inherent for multi-spindle heads in mechanical industry, for example. Each machine part of a specific type f requires a specific set of operations. Different sets can contain common operations. The total number of operations per workstation cannot exceed a given upper bound. Parts move along the stations in the same direction. If there is at least one operation attributed to the part type arriving at a station, this station is set up. Setup costs are part type dependent and they appear due to additional resources required for processing of a part at stations. There are two criteria: minimization of the number of stations, and minimization of the total setup cost. A solution of the problem implies the number of stations and the assignment of operations to these stations. Properties of an optimal solution were established. Basing on these properties, optimal algorithms were developed for the cases f = 2, f = 3, and an arbitrary f. The algorithms employ combinatorial optimization and linear algebra techniques. They run in a constant time if f is a constant

    Minimisation du coût de setup pour des lignes d'usinage multi-produits

    Get PDF
    International audienceLe probl eme etudi e correspond a la con guration optimale d'une ligne d'usinage destin ee a la production de f types de pi eces usin ees. Il s'agit d'une s equence de stations, sur lesquelles les op erations d'usinage sont ex ecut ees en parall ele. Chaque pi ece a usiner requiert l'ex ecution un ensemble d'op erations sp eci ques d ependant de son type. Le nombre total d'op erations par station ne peut pas exc eder une borne sup erieure donn ee. Les pi eces sont transport ees le long des stations dans la m^eme direction l'une apr es l'autre. S'il y a au moins une op eration a ect ee a une station qui correspond au type de pi ece en production, alors cette station est mise en service. Les co^uts de pr eparation li es a ces mises en service d ependent du type de pi ece et ils apparaissent en raison de ressources suppl ementaires requises pour le traitement d'une pi ece sur des stations. Il y a deux crit eres : la minimisation du nombre de stations et la minimisation du co^ut total de mises en courses. Une solution du probl eme implique le nombre de stations et l'a ectation des op erations a ces stations. Les propri et es d'une solution optimale ont et e etablies. En s'appuyant sur ces propri et es, des algorithmes optimaux ont et e d evelopp es pour les cas f = 2, f = 3, et un f arbitraire

    Minimal Equational Theories for Quantum Circuits

    Full text link
    We introduce the first minimal and complete equational theory for quantum circuits. Hence, we show that any true equation on quantum circuits can be derived from simple rules, all of them being standard except a novel but intuitive one which states that a multi-control 2π2\pi rotation is nothing but the identity. Our work improves on the recent complete equational theories for quantum circuits, by getting rid of several rules including a fairly unpractical one. One of our main contributions is to prove the minimality of the equational theory, i.e. none of the rules can be derived from the other ones. More generally, we demonstrate that any complete equational theory on quantum circuits (when all gates are unitary) requires rules acting on an unbounded number of qubits. Finally, we also simplify the complete equational theories for quantum circuits with ancillary qubits and/or qubit discarding

    LIA@CLEF 2018: Mining events opinion argumentation from raw unlabeled Twitter data using convolutional neural network

    Get PDF
    International audienceSocial networks on the Internet are becoming increasingly important in our society. In recent years, this type of media, through communication platforms such as Twitter, has brought new research issues due to the massive size of data exchanged and the important number of ever-increasing users. In this context, the CLEF 2018 Mining opinion argumentation task aims to retrieve, for a specific event (festival name or topic), the most diverse argumentative microblogs from a large collection of tweets about festivals in different languages. In this paper, we propose a four-step approach for extracting argumentative microblogs related to a specific query (or event) while no reference data is provided

    Quantum Circuit Completeness: Extensions and Simplifications

    Full text link
    Although quantum circuits have been ubiquitous for decades in quantum computing, the first complete equational theory for quantum circuits has only recently been introduced. Completeness guarantees that any true equation on quantum circuits can be derived from the equational theory. We improve this completeness result in two ways: (i) We simplify the equational theory by proving that several rules can be derived from the remaining ones. In particular, two out of the three most intricate rules are removed, the third one being slightly simplified. (ii) The complete equational theory can be extended to quantum circuits with ancillae or qubit discarding, to represent respectively quantum computations using an additional workspace, and hybrid quantum computations. We show that the remaining intricate rule can be greatly simplified in these more expressive settings, leading to equational theories where all equations act on a bounded number of qubits. The development of simple and complete equational theories for expressive quantum circuit models opens new avenues for reasoning about quantum circuits. It provides strong formal foundations for various compiling tasks such as circuit optimisation, hardware constraint satisfaction and verification

    Workforce minimization for a mixed-model assembly line in the automotive industry

    Get PDF
    A paced assembly line consisting of several workstations is considered. This line is intended to assemble products of different types. The sequence of products is given. The sequence of technological tasks is common for all types of products. The assignment of tasks to the stations and task sequence on each station are known and cannot be modified, and they do not depend on the product type. Tasks assigned to the same station are performed sequentially. The processing time of a task depends on the number of workers performing this task. Workers are identical and versatile. If a worker is assigned to a task, he/she works on this task from its start till completion. Workers can switch between the stations at the end of each task and the time needed by any worker to move from one station to another one can be neglected. At the line design stage, it is necessary to know how many workers are necessary for the line. To know the response to this question we will consider each possible takt and assign workers to tasks so that the total number of workers is minimized, provided that a given takt time is satisfied. The maximum of minimal numbers of workers for all takts will be considered as the necessary number of workers for the line. Thus, the problem is to assign workers to tasks for a takt. We prove that this problem is NP-hard in the strong sense, we develop an integer linear programming formulation to solve it, and propose conventional and randomized heuristics

    Optimizing Modular Machining Line Design Problem with Mixed Activation Mode of Machining Units

    Get PDF
    A modular transfer line designing problem is investigated. The problem is to find the best subset of modules (machining units) from a given set and to assign them to different stations so that technological constraints and cycle upper limit are respected and the line cost is minimal. The investigated lines have a mixed activation mode for the machining units of each station, i.e. the units of each station are arranged into a series of stages such that each stage is composed of several units activated in parallel. A mixed integer program approach is proposed to model and solve the corresponding design problem. Improvements are suggested in order to reduce the model size and speed up the computations

    Specific effect of a dopamine partial agonist on counterfactual learning: evidence from Gilles de la Tourette syndrome.

    Get PDF
    The dopamine partial agonist aripiprazole is increasingly used to treat pathologies for which other antipsychotics are indicated because it displays fewer side effects, such as sedation and depression-like symptoms, than other dopamine receptor antagonists. Previously, we showed that aripiprazole may protect motivational function by preserving reinforcement-related signals used to sustain reward-maximization. However, the effect of aripiprazole on more cognitive facets of human reinforcement learning, such as learning from the forgone outcomes of alternative courses of action (i.e., counterfactual learning), is unknown. To test the influence of aripiprazole on counterfactual learning, we administered a reinforcement learning task that involves both direct learning from obtained outcomes and indirect learning from forgone outcomes to two groups of Gilles de la Tourette (GTS) patients, one consisting of patients who were completely unmedicated and the other consisting of patients who were receiving aripiprazole monotherapy, and to healthy subjects. We found that whereas learning performance improved in the presence of counterfactual feedback in both healthy controls and unmedicated GTS patients, this was not the case in aripiprazole-medicated GTS patients. Our results suggest that whereas aripiprazole preserves direct learning of action-outcome associations, it may impair more complex inferential processes, such as counterfactual learning from forgone outcomes, in GTS patients treated with this medication
    corecore