491 research outputs found
Generalized Riemann sums
The primary aim of this chapter is, commemorating the 150th anniversary of
Riemann's death, to explain how the idea of {\it Riemann sum} is linked to
other branches of mathematics. The materials I treat are more or less classical
and elementary, thus available to the "common mathematician in the streets."
However one may still see here interesting inter-connection and cohesiveness in
mathematics
Selective excitation of metastable atomic states by femto- and attosecond laser pulses
The possibility of achieving highly selective excitation of low metastable
states of hydrogen and helium atoms by using short laser pulses with reasonable
parameters is demonstrated theoretically. Interactions of atoms with the laser
field are studied by solving the close-coupling equations without
discretization. The parameters of laser pulses are calculated using different
kinds of optimization procedures. For the excitation durations of hundreds of
femtoseconds direct optimization of the parameters of one and two laser pulses
with Gaussian envelopes is used to introduce a number of simple schemes of
selective excitation. To treat the case of shorter excitation durations,
optimal control theory is used and the calculated optimal fields are
approximated by sequences of pulses with reasonable shapes. A new way to
achieve selective excitation of metastable atomic states by using sequences of
attosecond pulses is introduced.Comment: To be published in Phys. Rev. A, 10 pages, 3 figure
Capture into Rydberg states and momentum distributions of ionized electrons
The yield of neutral excited atoms and low-energy photoelectrons generated by
the electron dynamics in the combined Coulomb and laser field after tunneling
is investigated. We present results of Monte-Carlo simulations built on the
two-step semiclassical model, as well as analytic estimates and scaling
relations for the population trapping into the Rydberg states. It is shown that
mainly those electrons are captured into bound states of the neutral atom that
due to their initial conditions (i) have moderate drift momentum imparted by
the laser field and (ii) avoid strong interaction ("hard" collision) with the
ion. In addition, it is demonstrated that the channel of capture, when
accounted for in semiclassical calculations, has a pronounced effect on the
momentum distribution of electrons with small positive energy. For the
parameters that we investigated its presence leads to a dip at zero momentum in
the longitudinal momentum distribution of the ionized electrons.Comment: 9 pages, 8 figures in one zip-archiv
Temperature Variation of Ultra Slow Light in a Cold Gas
A model is developed to explain the temperature dependence of the group
velocity as observed in the experiments of Hau et al (Nature {\bf397}, 594
(1999)). The group velocity is quite sensitive to the change in the spatial
density. The inhomogeneity in the density and its temperature dependence are
primarily responsible for the observed behavior.Comment: 12 pages, 4 figure
Multiphoton Ionization as Time-Dependent Tunneling
A new semiclassical approach to ionization by an oscillating field is
presented. For a delta-function atom, an asymptotic analysis is performed with
respect to a quantity h, defined as the ratio of photon energy to ponderomotive
energy. This h appears formally equivalent to Planck's constant in a suitably
transformed Schroedinger equation and allows semiclassical methods to be
applicable. Systematically, a picture of tunneling wave packets in complex time
is developped, which by interference account for the typical ponderomotive
features of ionization curves. These analytical results are then compared to
numerical simulations and are shown to be in good agreement.Comment: 36 pages (also printable half size), uuencoded compressed tarred
Latex file with 9 Postscript figures included automaticall
The effect of parallel static and microwave electric fields on excited hydrogen atoms
Motivated by recent experiments we analyse the classical dynamics of a
hydrogen atom in parallel static and microwave electric fields. Using an
appropriate representation and averaging approximations we show that resonant
ionisation is controlled by a separatrix, and provide necessary conditions for
a dynamical resonance to affect the ionisation probability.
The position of the dynamical resonance is computed using a high-order
perturbation series, and estimate its radius of convergence. We show that the
position of the dynamical resonance does not coincide precisely with the
ionisation maxima, and that the field switch-on time can dramatically affect
the ionisation signal which, for long switch times, reflects the shape of an
incipient homoclinic. Similarly, the resonance ionisation time can reflect the
time-scale of the separatrix motion, which is therefore longer than
conventional static field Stark ionisation. We explain why these effects should
be observed in the quantum dynamics.
PACs: 32.80.Rm, 33.40.+f, 34.10.+x, 05.45.Ac, 05.45.MtComment: 47 pages, 20 figure
On the absence of bound-state stabilization through short ultra-intense fields
We address the question of whether atomic bound states begin to stabilize in
the short ultra-intense field limit. We provide a general theory of ionization
probability and investigate its gauge invariance. For a wide range of
potentials we find an upper and lower bound by non-perturbative methods, which
clearly exclude the possibility that the ultra intense field might have a
stabilizing effect on the atom. For short pulses we find almost complete
ionization as the field strength increases.Comment: 34 pages Late
On the Influence of Pulse Shapes on Ionization Probability
We investigate analytical expressions for the upper and lower bounds for the
ionization probability through ultra-intense shortly pulsed laser radiation. We
take several different pulse shapes into account, including in particular those
with a smooth adiabatic turn-on and turn-off. For all situations for which our
bounds are applicable we do not find any evidence for bound-state
stabilization.Comment: 21 pages LateX, 10 figure
Stochastic ionization through noble tori: Renormalization results
We find that chaos in the stochastic ionization problem develops through the
break-up of a sequence of noble tori. In addition to being very accurate, our
method of choice, the renormalization map, is ideally suited for analyzing
properties at criticality. Our computations of chaos thresholds agree closely
with the widely used empirical Chirikov criterion
Strong-field control of x-ray absorption
Strong optical laser fields modify the way x rays interact with matter. This
allows us to use x rays to gain deeper insight into strong-field processes.
Alternatively, optical lasers may be utilized to control the propagation of x
rays through a medium. Gas-phase systems are particularly suitable for
illustrating the basic principles underlying combined x-ray and laser
interactions. Topics addressed include the impact of spin-orbit interaction on
the alignment of atomic ions produced in a strong laser field,
electromagnetically induced transparency in the x-ray regime, and laser-induced
alignment of molecules.Comment: 8 pages, 5 figures, 1 table, LaTe
- …