24 research outputs found

    Low-frequency switching voltage regulators for terrestrial photovoltaic systems

    Get PDF
    The photovoltaic technology project and the stand alone applications project are discussed. Two types of low frequency switching type regulators were investigated. The design, operating characteristics and field application of these regulators is described. The regulators are small in size, low in cost, very low in power dissipation, reliable and allow considerable flexibility in system design

    Photovoltaic power system for satellite Earth stations in remote areas: Project status and design description

    Get PDF
    A photovoltaic power system which will be installed at a remote location in Indonesia to provide power for a satellite Earth station and a classroom for video and audio teleconferences are described. The Earth station may also provide telephone service to a nearby village. The use of satellite communications for development assistance applications and the suitability of a hybrid photovoltaic engine generator power system for remote satellite Earth stations are demonstrated. The Indonesian rural satellite project is discussed and the photovoltaic power system is described

    Design description of the Schuchuli Village photovoltaic power system

    Get PDF
    A stand alone photovoltaic (PV) power system for the village of Schuchuli (Gunsight), Arizona, on the Papago Indian Reservation is a limited energy, all 120 V (d.c.) system to which loads cannot be arbitrarily added and consists of a 3.5 kW (peak) PV array, 2380 ampere-hours of battery storage, an electrical equipment building, a 120 V (d.c.) electrical distribution network, and equipment and automatic controls to provide control power for pumping water into an existing water system; operating 15 refrigerators, a clothes washing machine, a sewing machine, and lights for each of the homes and communal buildings. A solar hot water heater supplies hot water for the washing machine and communal laundry. Automatic control systems provide voltage control by limiting the number of PV strings supplying power during system operation and battery charging, and load management for operating high priority at the expense of low priority loads as the main battery becomes depleted

    Development of and flight results from the Space Acceleration Measurement System (SAMS)

    Get PDF
    Described here is the development of and the flight results from the Space Acceleration Measurement System (SAMS) flight units used in the Orbiter middeck, Spacelab module, and the Orbitercargo bay. The SAMS units are general purpose microgravity accelerometers designed to support a variety of science experiments with microgravity acceleration measurements. A total of six flight units have been fabricated; four for use in the Orbiter middeck and Spacelab module, and two for use in the Orbiter cargo bay. The design of the units is briefly described. The initial two flights of SAMS units on STS-40 (June 1991) and STS-43 (August 1991) resulted in 371 megabytes and 2.6 gigabytes of data respectively. Analytical techniques developed to examine this quantity of acceleration data are described and sample plots of analyzed data are illustrated. Future missions for the SAMS units are listed

    Operational performance of the photovoltaic-powered grain mill and water pump at Tangaye, Upper Volta

    Get PDF
    The first two years of operation of a stand alone photovoltaic (PV) power system for the village of Tangaye, Upper Volta in West Africa are described. The purpose of the experiment was to demonstrate that PV systems could provide reliable electrical power for multiple use applications in remote areas where local technical expertise is limited. The 1.8 kW (peak) power system supplies 120-V (d.c.) electrical power to operate a grain mill, a water pump, and mill building lights for the village. The system was initially sized to pump a part of the village water requirements from an existing improved well, and to meet a portion of the village grain grinding requirements. The data, observations, experiences, and conclusions developed during the first two years of operation are discussed. Reports of tests of the mills used in the project are included

    Low-frequency vibration environment for five Shuttle missions

    Get PDF
    The Microgravity Science and Applications Division's (MSAD) program to record and analyze the Shuttle's vibration environment is reviewed. This program provides microgravity science investigators with time and frequency analyses of the acceleration environment during their experiments' operation. Information is also provided for future investigators on the expected Shuttle vibration environment. As background, the two major elements of the program are discussed, the Space Acceleration Measurement System (SAMS) and the Acceleration Characterization and Analysis Project (ACAP). A comparison of the acceleration measurements from five Shuttle missions is discussed

    Control aspects of the Schuchuli Village stand-alone photovoltaic power system

    Get PDF
    A photovoltaic power system in an Arizona Indian village was installed. The control subsystem of this photovoltaic power system was analyzed. The four major functions of the control subsystem are: (1) voltage regulation; (2) load management; (3) water pump control; and (4) system protection. The control subsystem functions flowcharts for the control subsystem operation, and a computer program that models the control subsystem are presented

    High speed computerized data acquisition of photovoltaic V-I characteristics

    Get PDF
    The voltage current (V-I) characteristics of the photovoltaic array were studied under actual environmental conditions. A method of data acquisition was devised that uses a capacitor charge technique to obtain the V-I characteristic and a computerized data system to display, record and process the data. The capacitor charge technique uses an array shorting transistor and a capacitor bank to sweep the array operating voltage and current from short circuit to open circuit in a specified time (approximately 125 ms). The computerized data system is synchronized with this transition and repetitively samples the array voltage and current during the transition and records the ambient conditions. This data is then normalized by the computer to standard conditions (100 mW/sq cm, 28 C) and is available in tabular and graphic form for both the voltage current and voltage power characteristics. The capacitor charge technique is described

    Student Drop Tower Competitions: Dropping In a Microgravity Environment (DIME) and What If No Gravity? (WING)

    Get PDF
    This paper describes two student competition programs that allow student teams to conceive a science or engineering experiment for a microgravity environment. Selected teams design and build their experimental hardware, conduct baseline tests, and ship their experiment to NASA where it is operated in the 2.2 Second Drop Tower. The hardware and acquired data is provided to the teams after the tests are conducted so that the teams can prepare their final reports about their findings

    Student Design Challenges in Capillary Flow

    Get PDF
    For some grade 8-12 students, capillary flow has bridged the gap between the classroom and research facility, from normal gravity to microgravity. In the past four years, NASA and the Portland State University (PSU) have jointly challenged students to design test cells, using Computer-Aided Design (CAD), to study capillary action in microgravity as PSU has done on the International Space Station (ISS). Using the student-submitted CAD drawings, the test cells were manufactured by PSU and tested in their 2.1-second drop tower. The microgravity results were made available online for student analysis and reporting. Over 100 such experiments have been conducted, where there has been participation from 15 states plus a German school for the children of U.S. military personnel. In 2016, a related NASA challenge was held in partnership with the ASGSR, again, based on the research conducted by PSU. In this challenge, grade 9-12 students designed and built devices using capillary action to launch droplets as far as possible in NASAs 2.2 Second Drop Tower. Example results will be presented by students at this conference. The challenges engage students in ISS science and technology and can inspire them to pursue technical careers
    corecore