223 research outputs found

    Longitudinal transformation of nitrogen and carbon in the hyporheic zone of an N-rich stream: A combined modelling and field study

    Get PDF
    A combined modelling and field study approach was used to examine biogeochemical functioning of the hyporheic zone in two gravel bars in an N-rich fourth-order stream (River Hers, south-west France). Surfacewater and interstitial water were sampledmonthly (August 1994–January 1995), the latter in a network of 29 piezometers in the first gravel bar and 17 in the second. In both gravel bars, the hyporheic zone was created only by advected channelwater without any connectionwith groundwater. Longitudinal chemical profiles of Dissolved Organic Carbon (DOC), nitrate (NO3–N), ammonium (NH4–N) and Dissolved Oxygen (DO) were established for both gravel bars. Ambient and potential denitrification weremeasured in the laboratory during the same period using the acetylene inhibition technique. Factors limiting denitrification were also examined by testing the separate effects of nitrate or nitrate + carbon additions. A 1D reactive-transport model was used to simulate longitudinal transformation of nitrogen in the hyporheic zone, and to estimate the role of organic matter (DOC and POC) in the biogeochemical functioning of the hyporheic zone. Denitrification measurements with nitrate and nitrate + carbon additions both showed increased denitrification, suggesting that denitrification might not be C-limited at this site. Observations and model results showed the hyporheic zone to be a sink of DOC and nitrate, but DOC consumption appeared insufficient to explain nitrate depletion measured in the two gravel bars. Field data were better modelled when an additional DOC source from the POC fraction degraded by anaerobic respiration was included in the model

    Modélisation du mécanisme de coalescence des grains de polymère

    Get PDF
    Dans le procédé du rotomoulage, le phénomène physique majeur lors de l’écoulement des poudres est la coalescence et densification des grains. La coalescence est la formation d’une seule particule elliptique à partir de deux particules sous l’effet de la température et des forces de tension surfacique. Nous intéressons dans cette étude en particulier au mécanisme de coalescence des grains de poudre de PVDF. Les résultats de cette étude permettent de déterminer des paramètres tel que la vitesse de la coalescence pour l’optimisation du procédé

    Mutations in Hydin impair ciliary motility in mice

    Get PDF
    Chlamydomonas reinhardtii hydin is a central pair protein required for flagellar motility, and mice with Hydin defects develop lethal hydrocephalus. To determine if defects in Hydin cause hydrocephalus through a mechanism involving cilia, we compared the morphology, ultrastructure, and activity of cilia in wild-type and hydin mutant mice strains. The length and density of cilia in the brains of mutant animals is normal. The ciliary axoneme is normal with respect to the 9 + 2 microtubules, dynein arms, and radial spokes but one of the two central microtubules lacks a specific projection. The hydin mutant cilia are unable to bend normally, ciliary beat frequency is reduced, and the cilia tend to stall. As a result, these cilia are incapable of generating fluid flow. Similar defects are observed for cilia in trachea. We conclude that hydrocephalus in hydin mutants is caused by a central pair defect impairing ciliary motility and fluid transport in the brain

    X-ray-ultraviolet beam splitters for the Michelson interferometer

    Get PDF
    International audienceWith the aim of realizing a Michelson interferometer working at 13.9 nm, we have developed a symmetrical beam splitter with multilayers deposited on the front and back sides of a silicon nitride membrane. On the basis of the experimental optical properties of the membrane, simulations have been performed to define the multilayer structure that provides the highest reflectivity-transmission product. Optimized Mo-Si multilayers have been successfully deposited on both sides of the membrane by use of the ion-beam sputtering technique, with a thickness-period reproducibility of 0.1 nm. Measurements by means of synchrotron radiation at 13.9 nm and at an angle of 45° provide a reflectivity of 14.2% and a transmission of 15.2% for a 60% s-polarized light, close to the simulated values. Such a beam splitter has been used for x-ray laser Michelson interferometry at 13.9 nm. The first interferogram is discussed

    Design and characterization of extreme-ultraviolet broadband mirrors for attosecond science

    No full text
    International audienceA novel multilayer mirror was designed and fabricated based on a recently developed three-material technology aimed both at reaching reflectivities of about 20% and at controlling dispersion over a bandwidth covering photon energies between 35 and 50 eV. The spectral phase upon reflection was retrieved by measuring interferences in a two-color ionization process using high-order harmonics produced from a titanium: sapphire laser. We demonstrate the feasibility of designing and characterizing phase-controlled broadband optics in the extreme-ultraviolet domain, which should facilitate the manipulation of attosecond pulses for applications

    Polarization control of high order harmonics in the EUV photon energy range

    No full text
    International audienceWe report the generation of circularly polarized high order harmonics in the extreme ultraviolet range (18-27 nm) from a linearly polarized infrared laser (40 fs, 0.25 TW) focused into a neon filled gas cell. To circularly polarize the initially linearly polarized harmonics we have implemented a four-reflector phase-shifter. Fully circularly polarized radiation has been obtained with an efficiency of a few percents, thus being significantly more efficient than currently demonstrated direct generation of elliptically polarized harmonics. This demonstration opens up new experimental capabilities based on high order harmonics, for example, in biology and materials science. The inherent femtosecond time resolution of high order harmonic generating table top laser sources renders these an ideal tool for the investigation of ultrafast magnetization dynamics now that the magnetic circular dichroism at the absorption M-edges of transition metals can be exploite

    Sub-millennial climate variability from high-resolution water isotopes in the EPICA Dome C ice core

    Get PDF
    The EPICA Dome C (EDC) ice core provides the longest continuous climatic record, covering the last 800 000 years (800 kyr). A unique opportunity to investigate decadal to millennial variability during past glacial and interglacial periods is provided by the high-resolution water isotopic record (δ18O and δD) available for the EDC ice core. We present here a continuous compilation of the EDC water isotopic record at a sample resolution of 11 cm, which consists of 27 000 δ18O measurements and 7920 δD measurements (covering, respectively, 94 % and 27 % of the whole EDC record), including published and new measurements (2900 for both δ18O and δD) for the last 800 kyr. Here, we demonstrate that repeated water isotope measurements of the same EDC samples from different depth intervals obtained using different analytical methods are comparable within analytical uncertainty. We thus combine all available EDC water isotope measurements to generate a high-resolution (11 cm) dataset for the past 800 kyr. A frequency decomposition of the most complete δ18O record and a simple assessment of the possible influence of diffusion on the measured profile shows that the variability at the multi-decadal to multi-centennial timescale is higher during glacial than during interglacial periods and higher during early interglacial isotopic maxima than during the Holocene. This analysis shows as well that during interglacial periods characterized by a temperature optimum at the beginning, the multi-centennial variability is strongest over this temperature optimum.publishedVersio

    Simulating CH_4 and CO_2 over South and East Asia using the zoomed chemistry transport model LMDz-INCA

    Get PDF
    The increasing availability of atmospheric measurements of greenhouse gases (GHGs) from surface stations can improve the retrieval of their fluxes at higher spatial and temporal resolutions by inversions, provided that transport models are able to properly represent the variability of concentrations observed at different stations. South and East Asia (SEA; the study area in this paper including the regions of South Asia and East Asia) is a region with large and very uncertain emissions of carbon dioxide (CO_2) and methane (CH_4), the most potent anthropogenic GHGs. Monitoring networks have expanded greatly during the past decade in this region, which should contribute to reducing uncertainties in estimates of regional GHG budgets. In this study, we simulate concentrations of CH_4 and CO_2 using zoomed versions (abbreviated as ZAs) of the global chemistry transport model LMDz-INCA, which have fine horizontal resolutions of  ∼ 0.66° in longitude and  ∼ 0.51° in latitude over SEA and coarser resolutions elsewhere. The concentrations of CH_4 and CO_2 simulated from ZAs are compared to those from the same model but with standard model grids of 2.50° in longitude and 1.27° in latitude (abbreviated as STs), both prescribed with the same natural and anthropogenic fluxes. Model performance is evaluated for each model version at multi-annual, seasonal, synoptic and diurnal scales, against a unique observation dataset including 39 global and regional stations over SEA and around the world. Results show that ZAs improve the overall representation of CH_4 annual gradients between stations in SEA, with reduction of RMSE by 16–20% compared to STs. The model improvement mainly results from reduction in representation error at finer horizontal resolutions and thus better characterization of the CH_4 concentration gradients related to scattered distributed emission sources. However, the performance of ZAs at a specific station as compared to STs is more sensitive to errors in meteorological forcings and surface fluxes, especially when short-term variabilities or stations close to source regions are examined. This highlights the importance of accurate a priori CH_4 surface fluxes in high-resolution transport modeling and inverse studies, particularly regarding locations and magnitudes of emission hotspots. Model performance for CO_2 suggests that the CO_2 surface fluxes have not been prescribed with sufficient accuracy and resolution, especially the spatiotemporally varying carbon exchange between land surface and atmosphere. In addition, the representation of the CH_4 and CO_2 short-term variabilities is also limited by model's ability to simulate boundary layer mixing and mesoscale transport in complex terrains, emphasizing the need to improve sub-grid physical parameterizations in addition to refinement of model resolutions

    Simulating CH_4 and CO_2 over South and East Asia using the zoomed chemistry transport model LMDz-INCA

    Get PDF
    The increasing availability of atmospheric measurements of greenhouse gases (GHGs) from surface stations can improve the retrieval of their fluxes at higher spatial and temporal resolutions by inversions, provided that transport models are able to properly represent the variability of concentrations observed at different stations. South and East Asia (SEA; the study area in this paper including the regions of South Asia and East Asia) is a region with large and very uncertain emissions of carbon dioxide (CO_2) and methane (CH_4), the most potent anthropogenic GHGs. Monitoring networks have expanded greatly during the past decade in this region, which should contribute to reducing uncertainties in estimates of regional GHG budgets. In this study, we simulate concentrations of CH_4 and CO_2 using zoomed versions (abbreviated as ZAs) of the global chemistry transport model LMDz-INCA, which have fine horizontal resolutions of  ∼ 0.66° in longitude and  ∼ 0.51° in latitude over SEA and coarser resolutions elsewhere. The concentrations of CH_4 and CO_2 simulated from ZAs are compared to those from the same model but with standard model grids of 2.50° in longitude and 1.27° in latitude (abbreviated as STs), both prescribed with the same natural and anthropogenic fluxes. Model performance is evaluated for each model version at multi-annual, seasonal, synoptic and diurnal scales, against a unique observation dataset including 39 global and regional stations over SEA and around the world. Results show that ZAs improve the overall representation of CH_4 annual gradients between stations in SEA, with reduction of RMSE by 16–20% compared to STs. The model improvement mainly results from reduction in representation error at finer horizontal resolutions and thus better characterization of the CH_4 concentration gradients related to scattered distributed emission sources. However, the performance of ZAs at a specific station as compared to STs is more sensitive to errors in meteorological forcings and surface fluxes, especially when short-term variabilities or stations close to source regions are examined. This highlights the importance of accurate a priori CH_4 surface fluxes in high-resolution transport modeling and inverse studies, particularly regarding locations and magnitudes of emission hotspots. Model performance for CO_2 suggests that the CO_2 surface fluxes have not been prescribed with sufficient accuracy and resolution, especially the spatiotemporally varying carbon exchange between land surface and atmosphere. In addition, the representation of the CH_4 and CO_2 short-term variabilities is also limited by model's ability to simulate boundary layer mixing and mesoscale transport in complex terrains, emphasizing the need to improve sub-grid physical parameterizations in addition to refinement of model resolutions
    corecore