104 research outputs found

    Uses of uncalibrated images to enrich 3D models information

    Get PDF
    The decrease in costs of semi-professional digital cameras has led to the possibility for everyone to acquire a very detailed description of a scene in a very short time. Unfortunately, the interpretation of the images is usually quite hard, due to the amount of data and the lack of robust and generic image analysis methods. Nevertheless, if a geometric description of the depicted scene is available, it gets much easier to extract information from 2D data. This information can be used to enrich the quality of the 3D data in several ways. In this thesis, several uses of sets of unregistered images for the enrichment of 3D models are shown. In particular, two possible fields of application are presented: the color acquisition, projection and visualization and the geometry modification. Regarding color management, several practical and cheap solutions to overcome the main issues in this field are presented. Moreover, some real applications, mainly related to Cultural Heritage, show that provided methods are robust and effective. In the context of geometry modification, two approaches are presented to modify already existing 3D models. In the first one, information extracted from images is used to deform a dummy model to obtain accurate 3D head models, used for simulation in the context of three-dimensional audio rendering. The second approach presents a method to fill holes in 3D models, with the use of registered images depicting a pattern projected on the real object. Finally, some useful indications about the possible future work in all the presented fields are given, in order to delineate the developments of this promising direction of research

    Distribución y uso de modelos 3D en la web: ¿estamos listos?

    Get PDF
    [EN] Digital technologies are now mature for producing high quality digital replicas of Cultural Heritage (CH) assets. The research results produced in the last decade ignitedan impressive evolution and consolidation of the technologies for acquiring high-quality digital three-dimensional (3D)models, encompassing both geometry and color. What remains still an open problem is how to deliver those data and related knowledge to our society. The web is nowadays the main channel for the dissemination of knowledge. Emerging commercial solutions for web-publishing of 3D data are consolidating and becoming a de-facto standard for many applications(e-commerce, industrial products, education, etc.).In this framework, CH is a very specific domain, requiring highly flexible solutions. Some recent experiences arepresented, aimed at providing a support to the archival of archaeological3Ddata, supporting web-based publishing of very high-resolution digitization results and finally enabling the documentation of complex restoration actions. All those examples have been recently implemented on the open-source 3D Heritage Online Presenter (3DHOP)platform, developed at CNR-ISTI[ES] Las tecnologías digitales estánahora maduraspara producir réplicas digitales de alta calidad de valores activos del patrimonio cultural (CH). Los resultados de la investigación producidos en la última década han mostrado una evolución impresionante y una consolidación de las tecnologías para la capturade modelos digitales tridimensionales (3D)de alta calidad, que abarcanla geometríay el color.Lo que queda aún por resolver estárelacionado con la forma de distribuirlos datos y el conocimiento relacionado conla sociedad. La web es hoy en día el principal canal utilizado para divulgarel conocimiento. Las soluciones comerciales nuevas relacionadas con la publicación en la red de datos en 3D se están consolidando y convirtiendo en un estándar de facto para muchas aplicaciones(comercio electrónico, productos industriales, educación, etc.). En este escenario, el patrimonio culturales un dominio muy específico, que requiere soluciones muyflexibles.Se presentan algunas experiencias recientes, destinadasa proporcionar un apoyo al archivo de los datos arqueológicos3D, la publicaciónwebde los resultados de digitalización de muy alta resoluciónque permitenfinalmente la documentación de trabajos de restauracióncomplejos. Todos estos ejemplos se han implementado recientemente en la plataforma 3D Heritage Online Presenter(3DHOP)de código abierto, desarrolladaen el CNR-ISTI.The research leading to these results has received funding from the EU 7th Framework Programme (FP7/2007-2013) under grant agreement no. 654119 (EC "PARTHENOS" project) and EU H2020 Programme (“EMOTIVE: EMOTIve Virtual cultural Experiences through personalized storytelling”, H2020-SC6-CULT-COOP-08-2016) under grant agreement no. 727188.Scopigno, R.; Callieri, M.; Dellepiane, M.; Ponchio, F.; Potenziani, M. (2017). Delivering and using 3D models on the web: are we ready?. Virtual Archaeology Review. 8(17):1-9. https://doi.org/10.4995/var.2017.6405SWORD1981

    Extending Geometrical Acoustics to Highly Detailed Architectural Environments

    Get PDF
    International audienceGeometrical acoustics (GA) is a widely used approximation for simulating sound propagation in virtual 3D environments. However, GA is a high-frequency approximation and therefore very detailed models, containing features small compared to audible wavelengths, may fall outside its validity domain. Including finer geometrical details might actually degrade the quality of the simulation, as supported by a number of previous studies. Furthermore, the cost of running GA-based simulations significantly increases with the geometrical complexity. In this paper, we propose an extension to GA for highly detailed environments. In particular, we pre-compute a representation of the scattering behavior off complex geometry using finite element techniques. We then use this representation within classical GA frameworks, such as radiosity or ray-casting, to compute impulse responses and auralize the corresponding acoustical effects

    Instant Sound Scattering

    Get PDF
    International audienceReal-time sound rendering engines often render occlusion and early sound reflection effects using geometrical techniques such as ray or beam tracing. They can only achieve interactive rendering for environments of low local complexity resulting in crude effects which can degrade the sense of immersion. However, surface detail or complex dynamic geometry has a strong influence on sound propagation and the resulting auditory perception. This paper focuses on high-quality modeling of first-order sound scattering. Based on a surface-integral formulation and the Kirchhoff approximation, we propose an efficient evaluation of scattering effects, including both diffraction and reflection, that leverages programmable graphics hardware for dense sampling of complex surfaces. We evaluate possible surface simplification techniques and show that combined normal and displacement maps can be successfully used for audio scattering calculations. We present an auralization framework that can render scattering effects interactively thus providing a more compelling experience. We demonstrate that, while only considering first order phenomena, our approach can provide realistic results for a number of practical interactive applications. It can also process highly detailed models containing millions of unorganized triangles in minutes, generating high-quality scattering filters. Resulting simulations compare well with on-site recordings showing that the Kirchhoff approximation can be used for complex scattering problems

    Management of young women with early breast cancer

    Get PDF
    Breast cancer is still the most frequent cancer diagnosed in women aged 6440 years and the primary cause of death in this age group. The management of these patients needs a dedicated approach involving a multidisciplinary team that takes into account their treatment and survivorship issues. The present review aims to provide a perspective on the many challenges associated with treatment of young women with early breast cancer. We will focus on the standard (neo)adjuvant treatment, highlighting the paucity of age-specific results about the available genomic signatures, the groundbreaking landscape of adjuvant endocrine therapy and the relevant issue of the fertility preservation

    Reconstructing head models from photographs for individualized 3D-audio processing

    Get PDF
    International audienceVisual fidelity and interactivity are the main goals in Computer Graphics research, but recently also audio is assuming an important role. Binaural rendering can provide extremely pleasing and realistic three-dimensional sound, but to achieve best results it's necessary either to measure or to estimate individual Head Related Transfer Function (HRTF). This function is strictly related to the peculiar features of ears and face of the listener. Recent sound scattering simulation techniques can calculate HRTF starting from an accurate 3D model of a human head. Hence, the use of binaural rendering on large scale (i.e. video games, entertainment) could depend on the possibility to produce a sufficiently accurate 3D model of a human head, starting from the smallest possible input. In this paper we present a completely automatic system, which produces a 3D model of a head starting from simple input data (five photos and some key-points indicated by user). The geometry is generated by extracting information from images and accordingly deforming a 3D dummy to reproduce user head features. The system proves to be fast, automatic, robust and reliable: geometric validation and preliminary assessments show that it can be accurate enough for HRTF calculation

    3DHOP una piattaforma flessibile per la pubblicazione e visualizzazione su Web dei risultati di digitalizzazioni 3D

    Get PDF
    3DHOP (3D Heritage Online Presenter) is an innovative technological solution for the advanced presentation of high-resolution 3D content on the Web. The design of this tool has been focused towards the Cultural Heritage (CH) field, even though its versatility makes it a general-purpose instrument. 3DHOP is particularly suitable for the online presentation of CH artifacts due to its main features: the capability to efficiently stream high-resolution 3D models (as the ones coming from 3D scanning which are usually employed in CH); the possibility to build integrated presentations schemes by interconnecting the viewer to the rest of web pages elements; and, finally, the ready-to-use templates and examples of configuration focused towards CH applications. In its design and development, we put particular attention on three factors: easiness of use, smooth learning curve and performances. 3DHOP is written in JavaScript and it uses the WebGL subset of HTML5 for efficient rendering. Thanks to its modular nature, and a declarative-like setup, it is easy to learn and may be configured and customized at different levels, making it accessible for people without skilled knowledge in Computer Graphics (CG) programming. In this paper we present capabilities and characteristics of the third release of this tool, using some examples based on real-world projects

    Gonadotropin Releasing Hormone Agonists Have an Anti-apoptotic Effect on Cumulus Cells

    Get PDF
    Background: Ovaries are sensitive to chemotherapy, which may lead to early depletion of primordial follicle reserve. One strategy for gonadal function preservation is temporary ovarian suppression with Gonadotropin Releasing Hormone agonists (GnRHa) during chemotherapy. To date, GnRHa protective mechanism of action remains not fully elucidated. Methods: We collected 260 immature cumulus cell-oocyte complexes (COC) from 111 women < 38 years old, with a normal ovarian reserve. The COC were randomly assigned to the following groups: (a) control; culture with the addition of (b) GnRHa; (c) cyclophosphamide; (d) cyclophosphamide plus GnRHa. After in vitro treatments, RNA and proteins were extracted from oocytes and cumulus cells (CC), separately. Potential effects of drugs were evaluated on GnRH receptors, apoptosis pathways, ceramide pathway, and glutathione synthesis by quantitative PCR and, whenever possible, by Western blot. Results: Cyclophosphamide triggered activation of the extrinsic pathway of apoptosis mediated by BAX in CC. The co-administration of GnRHa inhibited the apoptosis pathway in CC. According to our model, the GnRHa does not directly act on oocytes, which do not express GnRH receptors. Moreover, glutathione synthesis was decreased after GnRHa treatment both in CC and oocytes. Conclusion: Our data suggest that the protective mechanisms induced by GnRHa is mediated by an anti-apoptotic effect on CC

    Potential Mechanisms of Ovarian Protection with Gonadotropin-Releasing Hormone Agonist in Breast Cancer Patients: A Review

    Get PDF
    The use of chemotherapy in premenopausal cancer patients may lead to chemotherapy-induced premature ovarian failure. Pharmacological temporary ovarian suppression obtained with the gonadotropin-releasing hormone agonist (GnRHa) administered concomitantly with chemotherapy has been investigated as a technique capable to reduce the gonadotoxicity, reducing the risk of developing premature menopause. In recent years, important evidence has become available on the efficacy and safety of this strategy that should now be considered a standard option for ovarian function preservation in premenopausal breast cancer patients. However, in women interested in fertility preservation, this is not an alternative to cryopreservation strategies, which remains the first option to be proposed. The purpose of this review is to summarize the mechanisms of GnRHa in the preservation of fertility in premenopausal cancer patient candidates to receive chemotherapy, highlighting the areas of doubt that require further investigation
    corecore