9 research outputs found

    A Importância da Ciência em tempos de Pandemia: a ciência a serviço da vida

    Get PDF
     Este artgo possui como objetivo contemplar a forma como os Institutos de Pesquisa vinculados à Secretaria deEstado da Saúde de São Paulo coordenaram seus esforços no enfrentamento à pandemia causada pelo SARS-Cov-2

    Activation of leukocyte rolling by the cysteine-rich domain and the hyper-variable region of HF3, a snake venom hemorrhagic metalloproteinase

    Get PDF
    AbstractThe functionality of the disintegrin-like/cysteine-rich domains of snake venom metalloproteinases (SVMPs) has been shown to reside in the cysteine-rich region, which can interact with VWA-containing proteins. Recently, the hyper-variable region (HVR) of the cysteine-rich domain was suggested to constitute a potential protein–protein adhesive interface. Here we show that recombinant proteins of HF3, a hemorrhagic P-III SVMP, containing the cysteine-rich domain (disintegrin-like/cysteine-rich and cysteine-rich proteins) but not the disintegrin-like protein were able to significantly increase leukocyte rolling in the microcirculation. Peptides from the HVR also promoted leukocyte rolling and this activity was inhibited by anti-alphaM/beta2 antibodies. These results show, for the first time, that the cysteine-rich domain and its HVR play a role in triggering pro-inflammatory effects mediated by integrins

    Recombinant Phospholipase D from Loxosceles gaucho Binds to Platelets and Promotes Phosphatidylserine Exposure

    No full text
    Spider envenomation, from the genus Loxosceles, is frequently reported as a cause of necrotic lesions in humans around the world. Among the many components found in the venom of Loxosceles genus, phospholipases D (PLDs) are the most investigated, since they can cause a massive inflammatory response, dermonecrosis, hemolysis and platelet aggregation, among other effects. Even though the PLDs induce strong platelet aggregation, there are no studies showing how the PLDs interact with platelets to promote this effect. Since many agonists must interact with specific receptors on the platelet membrane to induce aggregation, it is reasonable to expect that the PLDs may, in some way, also interact with platelets, to induce this activity. Therefore, to address this possibility, in this work, a recombinant PLD, called LgRec1, from L. gaucho was fused to enhanced green fluorescent protein (EGFP) and used as a probe to detect the interaction of LgRec1 to platelets, by fluorescence-activated cell sorter (FACS) and confocal microscopy. The preservation of biological activities of this chimera toxin was also analyzed. As a first, the results show that LgRec1 does not require plasma components to bind to platelets, although these components are necessary to LgRec1 to induce platelet aggregation. Also, the attachment of LgRec1 to human platelets’ cell membranes suggests that the exposure of phosphatidylserine (PS) may act as a scaffold for coagulation factors. Therefore, the results add new information about the binding of Loxosceles PLDs to platelets, which may help unravel how these toxins promote platelet aggregation

    Toxin Fused with SUMO Tag: A New Expression Vector Strategy to Obtain Recombinant Venom Toxins with Easy Tag Removal inside the Bacteria

    No full text
    Many animal toxins may target the same molecules that need to be controlled in certain pathologies; therefore, some toxins have led to the formulation of drugs that are presently used, and many other drugs are still under development. Nevertheless, collecting sufficient toxins from the original source might be a limiting factor in studying their biological activities. Thus, molecular biology techniques have been applied in order to obtain large amounts of recombinant toxins into Escherichia coli. However, most animal toxins are difficult to express in this system, which results in insoluble, misfolded, or unstable proteins. To solve these issues, toxins have been fused with tags that may improve protein expression, solubility, and stability. Among these tags, the SUMO (small ubiquitin-related modifier) has been shown to be very efficient and can be removed by the Ulp1 protease. However, removing SUMO is a labor- and time-consuming process. To enhance this system, here we show the construction of a bicistronic vector that allows the expression of any protein fused to both the SUMO and Ulp1 protease. In this way, after expression, Ulp1 is able to cleave SUMO and leave the protein interest-free and ready for purification. This strategy was validated through the expression of a new phospholipase D from the spider Loxosceles gaucho and a disintegrin from the Bothrops insularis snake. Both recombinant toxins showed good yield and preserved biological activities, indicating that the bicistronic vector may be a viable method to produce proteins that are difficult to express

    Crotoxin, a rattlesnake toxin, induces a long-lasting inhibitory effect on phagocytosis by neutrophils

    No full text
    Crotalus durissus terrificus snake venom (CdtV) has long-lasting anti-inflammatory properties and inhibits the spreading and phagocytic activity of macrophages. Crotoxin (CTX), the main component of CdtV, is responsible for these effects. Considering the role of neutrophils in the inflammatory response and the lack of information about the effect of CdtV on neutrophils, the aim of this study was to investigate the effect of CdtV and CTX on two functions of neutrophils, namely phagocytosis and production of reactive oxygen species, and on the intracellular signaling involved in phagocytosis, particularly on tyrosine phosphorylation and rearrangements of the actin cytoskeleton. Our results showed that the incubation of neutrophils with CdtV or CTX, at different concentrations, or the subcutaneous injection of CdtV or CTX in rats two hours or one, four or 14 days before or one hour after the induction of inflammation inhibited the phagocytic activity of neutrophils. Furthermore, these in vitro and in vivo effects were associated with CdtV and CTX inhibition of tyrosine phosphorylation and consequently actin polymerization. Despite the inhibitory effect on phagocytosis, this study demonstrated that CdtV and CTX did not alter the production of the main reactive oxygen species. Therefore, this study characterized, for the first time, the actions of CdtV on neutrophils and demonstrated that CTX induces a long-lasting inhibition of tyrosine phosphorylation and consequently phagocytosis. We suggest that CTX represents a potential natural product in controlling inflammatory diseases, since a single dose exerts a long-lasting effect on intracellular signaling involved in phagocytosis by neutrophils.Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES)Instituto Nacional de Ciencia e Tecnologia em Toxinas (INCTTOX
    corecore