1,104 research outputs found

    Neurosteroids and GABAA Receptor Interactions: A Focus on Stress

    Get PDF
    Since the pioneering discovery of the rapid CNS depressant actions of steroids by the “father of stress,” Hans Seyle 70 years ago, brain-derived “neurosteroids” have emerged as powerful endogenous modulators of neuronal excitability. The majority of the intervening research has focused on a class of naturally occurring steroids that are metabolites of progesterone and deoxycorticosterone, which act in a non-genomic manner to selectively augment signals mediated by the main inhibitory receptor in the CNS, the GABAA receptor. Abnormal levels of such neurosteroids associate with a variety of neurological and psychiatric disorders, suggesting that they serve important physiological and pathophysiological roles. A compelling case can be made to implicate neurosteroids in stress-related disturbances. Here we will critically appraise how brain-derived neurosteroids may impact on the stress response to acute and chronic challenges, both pre- and postnatally through to adulthood. The pathological implications of such actions in the development of psychiatric disturbances will be discussed, with an emphasis on the therapeutic potential of neurosteroids for the treatment of stress-associated disorders

    Pastoralism in Kenya and Tanzania: Challenges and opportunities in animal health and food security

    Get PDF
    Pastoralism is used to describe a society that derives majority of their food and income from livestock. This form of farming system is largely practised in the arid and semi-arid lands (ASAL). It is estimated that 70% of the landmass in the Horn of Africa is dry land; in Kenya 80% of the landmass is classified as ASAL, while approximately half of Tanzania consists of dry land. These dry lands support wild resource harvesting, tourism but most importantly livestock rearing. It is estimated that over 75% of cattle herds in Kenya and 90% in Tanzania are kept by pastoralists who supply the bulk of meat consumed in the countries. In this paper we present current animal health challenges and opportunities being faced by pastoral farmers in Tanzania and Kenya based on primary data collected in Kajiado County, Kenya and Tanga and Morogoro regions in Tanzania. In the midst of many challenges and opportunities, food safety and food security are never assured amongst the pastoralists. We highlight pastoral community high livestock dependency for food and income, market access to livestock products, access to animal and human health services, livestock-wildlife interaction, factors that hinder increase of livestock assets and explore the knowledge of disease and exposure to zoonoses within the pastoral community

    A standardisation proof for algebraic pattern calculi

    Full text link
    This work gives some insights and results on standardisation for call-by-name pattern calculi. More precisely, we define standard reductions for a pattern calculus with constructor-based data terms and patterns. This notion is based on reduction steps that are needed to match an argument with respect to a given pattern. We prove the Standardisation Theorem by using the technique developed by Takahashi and Crary for lambda-calculus. The proof is based on the fact that any development can be specified as a sequence of head steps followed by internal reductions, i.e. reductions in which no head steps are involved.Comment: In Proceedings HOR 2010, arXiv:1102.346

    Pastoralism: Animal health and food safety situation analysis, Kenya and Tanzania

    Get PDF
    Pastoralism is a farming system in societies that derive majority of their food and income from livestock production. This form of farming system is practised in the world’s arid and semi arid lands (ASALs). It is estimated that 70% of the landmass in the Horn of Africa is dry land; in Kenya 80% of the landmass is classified as ASAL while approximately half of Tanzania consists of dry land. These dry lands can only be effectively utilised when used for livestock rearing, supporting wildlife resource harvesting and tourism. In this paper we present a current situation analysis of animal health and its implication on food safety based on primary data collected from pastoralists in Kajiado County, Kenya and in Tanga and Morogoro regions in Tanzania. Less than 10% of pastoralists in these communities engage in crop farming to supplement household income, and with their high dependency on livestock rearing, animal health challenges are a significant problem. We report on the livestock diseases with high prevalence and postulate their effects on food safety and food security in pastoral communities. We also explore the extent of species rearing diversification, pastoralist trade orientation, and practices that may expose the community and their trading partners to animal and zoonotic infections. We also assess access to animal health service providers within these pastoral areas and veterinary drug usage that may have significant implications on animal health and food safety

    ‘Vox Twitterati’: Investigating the effects of social media exemplars in online news articles

    Get PDF
    There is a growing trend among online news outlets to include Twitter posts as an equivalent to the traditional “vox pop” or “man-on-the-street” interview. Media effects research has documented the ability of vox pops to influence consumer perceptions of news issues within the traditional media environment, but there is limited research on the possible effects that including social media exemplars as vox pops within editorially curated articles might have on issue perceptions. Drawing on the exemplification effects literature to inform the experimental design, we conduct two studies on two topics of either low or high national salience and find strong evidence that vox pop tweets can influence perceptions of public opinion and, indirectly, readers’ own opinions on an issue. Results are discussed in light of implications for journalistic practice, media effects research and the wider democratic process

    GABAA receptors in GtoPdb v.2023.1

    Get PDF
    The GABAA receptor is a ligand-gated ion channel of the Cys-loop family that includes the nicotinic acetylcholine, 5-HT3 and strychnine-sensitive glycine receptors. GABAA receptor-mediated inhibition within the CNS occurs by fast synaptic transmission, sustained tonic inhibition and temporally intermediate events that have been termed 'GABAA, slow' [45]. GABAA receptors exist as pentamers of 4TM subunits that form an intrinsic anion selective channel. Sequences of six α, three β, three γ, one δ, three ρ, one ε, one π and one θ GABAA receptor subunits have been reported in mammals [281, 237, 238, 288]. The π-subunit is restricted to reproductive tissue. Alternatively spliced versions of many subunits exist (e.g. α4- and α6- (both not functional) α5-, β2-, β3- and γ2), along with RNA editing of the α3 subunit [71]. The three ρ-subunits, (ρ1-3) function as either homo- or hetero-oligomeric assemblies [365, 50]. Receptors formed from ρ-subunits, because of their distinctive pharmacology that includes insensitivity to bicuculline, benzodiazepines and barbiturates, have sometimes been termed GABAC receptors [365], but they are classified as GABAA receptors by NC-IUPHAR on the basis of structural and functional criteria [16, 237, 238].Many GABAA receptor subtypes contain α-, β- and γ-subunits with the likely stoichiometry 2α.2β.1γ [170, 237]. It is thought that the majority of GABAA receptors harbour a single type of α- and β -subunit variant. The α1β2γ2 hetero-oligomer constitutes the largest population of GABAA receptors in the CNS, followed by the α2β3γ2 and α3β3γ2 isoforms. Receptors that incorporate the α4- α5-or α6-subunit, or the β1-, γ1-, γ3-, δ-, ε- and θ-subunits, are less numerous, but they may nonetheless serve important functions. For example, extrasynaptically located receptors that contain α6- and δ-subunits in cerebellar granule cells, or an α4- and δ-subunit in dentate gyrus granule cells and thalamic neurones, mediate a tonic current that is important for neuronal excitability in response to ambient concentrations of GABA [211, 275, 84, 19, 293]. GABA binding occurs at the β+/α- subunit interface and the homologous γ+/α- subunits interface creates the benzodiazepine site. A second site for benzodiazepine binding has recently been postulated to occur at the α+/β- interface ([257]; reviewed by [287]). The particular α-and γ-subunit isoforms exhibit marked effects on recognition and/or efficacy at the benzodiazepine site. Thus, receptors incorporating either α4- or α6-subunits are not recognised by ‘classical’ benzodiazepines, such as flunitrazepam (but see [362]). The trafficking, cell surface expression, internalisation and function of GABAA receptors and their subunits are discussed in detail in several recent reviews [52, 141, 190, 322] but one point worthy of note is that receptors incorporating the γ2 subunit (except when associated with α5) cluster at the postsynaptic membrane (but may distribute dynamically between synaptic and extrasynaptic locations), whereas those incorporating the δ subunit appear to be exclusively extrasynaptic. NC-IUPHAR [16, 237, 3, 2] class the GABAA receptors according to their subunit structure, pharmacology and receptor function. Currently, eleven native GABAA receptors are classed as conclusively identified (i.e., α1β2γ2, α2βγ2, α3βγ2, α4βγ2, α4β2δ, α4β3δ, α5βγ2, α6βγ2, α6β2δ, α6β3δ and ρ) with further receptor isoforms occurring with high probability, or only tentatively [237, 238]. It is beyond the scope of this Guide to discuss the pharmacology of individual GABAA receptor isoforms in detail; such information can be gleaned in the reviews [16, 96, 170, 175, 144, 281, 218, 237, 238, 284, 9, 10]. Agents that discriminate between α-subunit isoforms are noted in the table and additional agents that demonstrate selectivity between receptor isoforms, for example via β-subunit selectivity, are indicated in the text below. The distinctive agonist and antagonist pharmacology of ρ receptors is summarised in the table and additional aspects are reviewed in [365, 50, 146, 225].Several high-resolution cryo-electron microscopy structures have been described in which the full-length human α1β3γ2L GABAA receptor in lipid nanodiscs is bound to the channel-blocker picrotoxin, the competitive antagonist bicuculline, the agonist GABA (γ-aminobutyric acid), and the classical benzodiazepines alprazolam and diazepam [200]

    Dynamical properties of the spin-Peierls compound \alpha'--NaV2O5

    Full text link
    Dynamical properties of the novel inorganic spin-Peierls compound \alpha'--NaV2O5 are investigated using a one-dimensional dimerized Heisenberg model. By exact diagonalizations of chains with up to 28 sites, supplemented by a finite-size scaling analysis, the dimerization parameter \delta is determined by requiring that the model reproduces the experimentally observed spin gap \Delta. The dynamical and static spin structure factors are calculated. As for CuGeO3, the existence of a low energy magnon branch separated from the continuum is predicted. The present calculations also suggest that a large magnetic Raman scattering intensity should appear above an energy threshold of 1.9 \Delta. The predicted photoemission spectrum is qualitatively similar to results for an undimerized chain due to the presence of sizable short-range antiferromagnetic correlations.Comment: 4 pages, latex, minor misprints corrected and a few references adde

    GABAA receptors in GtoPdb v.2021.3

    Get PDF
    The GABAA receptor is a ligand-gated ion channel of the Cys-loop family that includes the nicotinic acetylcholine, 5-HT3 and strychnine-sensitive glycine receptors. GABAA receptor-mediated inhibition within the CNS occurs by fast synaptic transmission, sustained tonic inhibition and temporally intermediate events that have been termed 'GABAA, slow' [45]. GABAA receptors exist as pentamers of 4TM subunits that form an intrinsic anion selective channel. Sequences of six α, three β, three γ, one δ, three ρ, one ε, one π and one θ GABAA receptor subunits have been reported in mammals [278, 235, 236, 283]. The π-subunit is restricted to reproductive tissue. Alternatively spliced versions of many subunits exist (e.g. α4- and α6- (both not functional) α5-, β2-, β3- and γ2), along with RNA editing of the α3 subunit [71]. The three ρ-subunits, (ρ1-3) function as either homo- or hetero-oligomeric assemblies [359, 50]. Receptors formed from ρ-subunits, because of their distinctive pharmacology that includes insensitivity to bicuculline, benzodiazepines and barbiturates, have sometimes been termed GABAC receptors [359], but they are classified as GABAA receptors by NC-IUPHAR on the basis of structural and functional criteria [16, 235, 236].Many GABAA receptor subtypes contain α-, β- and γ-subunits with the likely stoichiometry 2α.2β.1γ [168, 235]. It is thought that the majority of GABAA receptors harbour a single type of α- and β -subunit variant. The α1β2γ2 hetero-oligomer constitutes the largest population of GABAA receptors in the CNS, followed by the α2β3γ2 and α3β3γ2 isoforms. Receptors that incorporate the α4- α5-or α6-subunit, or the β1-, γ1-, γ3-, δ-, ε- and θ-subunits, are less numerous, but they may nonetheless serve important functions. For example, extrasynaptically located receptors that contain α6- and δ-subunits in cerebellar granule cells, or an α4- and δ-subunit in dentate gyrus granule cells and thalamic neurones, mediate a tonic current that is important for neuronal excitability in response to ambient concentrations of GABA [209, 272, 83, 19, 288]. GABA binding occurs at the β+/α- subunit interface and the homologous γ+/α- subunits interface creates the benzodiazepine site. A second site for benzodiazepine binding has recently been postulated to occur at the α+/β- interface ([254]; reviewed by [282]). The particular α-and γ-subunit isoforms exhibit marked effects on recognition and/or efficacy at the benzodiazepine site. Thus, receptors incorporating either α4- or α6-subunits are not recognised by ‘classical’ benzodiazepines, such as flunitrazepam (but see [356]). The trafficking, cell surface expression, internalisation and function of GABAA receptors and their subunits are discussed in detail in several recent reviews [52, 140, 188, 316] but one point worthy of note is that receptors incorporating the γ2 subunit (except when associated with α5) cluster at the postsynaptic membrane (but may distribute dynamically between synaptic and extrasynaptic locations), whereas as those incorporating the δ subunit appear to be exclusively extrasynaptic. NC-IUPHAR [16, 235, 3, 2] class the GABAA receptors according to their subunit structure, pharmacology and receptor function. Currently, eleven native GABAA receptors are classed as conclusively identified (i.e., α1β2γ2, α1βγ2, α3βγ2, α4βγ2, α4β2δ, α4β3δ, α5βγ2, α6βγ2, α6β2δ, α6β3δ and ρ) with further receptor isoforms occurring with high probability, or only tentatively [235, 236]. It is beyond the scope of this Guide to discuss the pharmacology of individual GABAA receptor isoforms in detail; such information can be gleaned in the reviews [16, 95, 168, 173, 143, 278, 216, 235, 236] and [9, 10]. Agents that discriminate between α-subunit isoforms are noted in the table and additional agents that demonstrate selectivity between receptor isoforms, for example via β-subunit selectivity, are indicated in the text below. The distinctive agonist and antagonist pharmacology of ρ receptors is summarised in the table and additional aspects are reviewed in [359, 50, 145, 223].Several high-resolution cryo-electron microscopy structures have been described in which the full-length human α1β3γ2L GABAA receptor in lipid nanodiscs is bound to the channel-blocker picrotoxin, the competitive antagonist bicuculline, the agonist GABA (γ-aminobutyric acid), and the classical benzodiazepines alprazolam and diazepam [198]

    GABAA receptors (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database

    Get PDF
    The GABAA receptor is a ligand-gated ion channel of the Cys-loop family that includes the nicotinic acetylcholine, 5-HT3 and strychnine-sensitive glycine receptors. GABAA receptor-mediated inhibition within the CNS occurs by fast synaptic transmission, sustained tonic inhibition and temporally intermediate events that have been termed ‘GABAA, slow’ [41]. GABAA receptors exist as pentamers of 4TM subunits that form an intrinsic anion selective channel. Sequences of six α, three β, three γ, one δ, three ρ, one ε, one π and one θ GABAA receptor subunits have been reported in mammals [273, 232, 231, 278]. The π-subunit is restricted to reproductive tissue. Alternatively spliced versions of many subunits exist (e.g. α4- and α6- (both not functional) α5-, β2-, β3- and γ2), along with RNA editing of the α3 subunit [67]. The three ρ-subunits, (ρ1-3) function as either homo- or hetero-oligomeric assemblies [354, 46]. Receptors formed from ρ-subunits, because of their distinctive pharmacology that includes insensitivity to bicuculline, benzodiazepines and barbiturates, have sometimes been termed GABAC receptors [354], but they are classified as GABAA receptors by NC-IUPHAR on the basis of structural and functional criteria [14, 232, 231].Many GABAA receptor subtypes contain α-, β- and γ-subunits with the likely stoichiometry 2α.2β.1γ [164, 232]. It is thought that the majority of GABAA receptors harbour a single type of α- and β -subunit variant. The α1β2γ2 hetero-oligomer constitutes the largest population of GABAA receptors in the CNS, followed by the α2β3γ2 and α3β3γ2 isoforms. Receptors that incorporate the α4- α5-or α6-subunit, or the β1-, γ1-, γ3-, δ-, ε- and θ-subunits, are less numerous, but they may nonetheless serve important functions. For example, extrasynaptically located receptors that contain α6- and δ-subunits in cerebellar granule cells, or an α4- and δ-subunit in dentate gyrus granule cells and thalamic neurones, mediate a tonic current that is important for neuronal excitability in response to ambient concentrations of GABA [205, 268, 79, 17, 283]. GABA binding occurs at the β+/α- subunit interface and the homologous γ+/α- subunits interface creates the benzodiazepine site. A second site for benzodiazepine binding has recently been postulated to occur at the α+/β- interface ([250]; reviewed by [277]). The particular α-and γ-subunit isoforms exhibit marked effects on recognition and/or efficacy at the benzodiazepine site. Thus, receptors incorporating either α4- or α6-subunits are not recognised by ‘classical’ benzodiazepines, such as flunitrazepam (but see [351]). The trafficking, cell surface expression, internalisation and function of GABAA receptors and their subunits are discussed in detail in several recent reviews [48, 136, 184, 311] but one point worthy of note is that receptors incorporating the γ2 subunit (except when associated with α5) cluster at the postsynaptic membrane (but may distribute dynamically between synaptic and extrasynaptic locations), whereas as those incorporating the d subunit appear to be exclusively extrasynaptic. NC-IUPHAR [14, 232] class the GABAA receptors according to their subunit structure, pharmacology and receptor function. Currently, eleven native GABAA receptors are classed as conclusively identified (i.e., α1β2γ2, α1βγ2, α3βγ2, α4βγ2, α4β2δ, α4β3δ, α5βγ2, α6βγ2, α6β2δ, α6β3δ and ρ) with further receptor isoforms occurring with high probability, or only tentatively [232, 231]. It is beyond the scope of this Guide to discuss the pharmacology of individual GABAA receptor isoforms in detail; such information can be gleaned in the reviews [14, 91, 164, 169, 140, 273, 212, 232, 231] and [8, 7]. Agents that discriminate between α-subunit isoforms are noted in the table and additional agents that demonstrate selectivity between receptor isoforms, for example via β-subunit selectivity, are indicated in the text below. The distinctive agonist and antagonist pharmacology of ρ receptors is summarised in the table and additional aspects are reviewed in [354, 46, 141, 219].Several high-resolution cryo-electron microscopy structures have been described in which the full-length human α1β3γ2L GABAA receptor in lipid nanodiscs is bound to the channel-blocker picrotoxin, the competitive antagonist bicuculline, the agonist GABA (γ-aminobutyric acid), and the classical benzodiazepines alprazolam and diazepam [194]

    Developing a pressure ulcer risk factor minimum data set and risk assessment framework

    Get PDF
    AIM: To agree a draft pressure ulcer risk factor Minimum Data Set to underpin the development of a new evidenced-based Risk Assessment Framework.BACKGROUND: A recent systematic review identified the need for a pressure ulcer risk factor Minimum Data Set and development and validation of an evidenced-based pressure ulcer Risk Assessment Framework. This was undertaken through the Pressure UlceR Programme Of reSEarch (RP-PG-0407-10056), funded by the National Institute for Health Research and incorporates five phases. This article reports phase two, a consensus study.DESIGN: Consensus study.METHOD: A modified nominal group technique based on the Research and Development/University of California at Los Angeles appropriateness method. This incorporated an expert group, review of the evidence and the views of a Patient and Public Involvement service user group. Data were collected December 2010-December 2011.FINDINGS: The risk factors and assessment items of the Minimum Data Set (including immobility, pressure ulcer and skin status, perfusion, diabetes, skin moisture, sensory perception and nutrition) were agreed. In addition, a draft Risk Assessment Framework incorporating all Minimum Data Set items was developed, comprising a two stage assessment process (screening and detailed full assessment) and decision pathways.CONCLUSION: The draft Risk Assessment Framework will undergo further design and pre-testing with clinical nurses to assess and improve its usability. It will then be evaluated in clinical practice to assess its validity and reliability. The Minimum Data Set could be used in future for large scale risk factor studies informing refinement of the Risk Assessment Framework
    • 

    corecore