226 research outputs found

    Targeted molecular characterization shows differences between primary and secondary myelofibrosis

    Get PDF
    INTRODUCTION: In BCR-ABL1-negative myeloproliferative neoplasms, myelofibrosis (MF) is either primary (PMF) or secondary (SMF) to polycythemia vera or essential thrombocythemia. MF is characterized by an increased risk of transformation to acute myeloid leukemia (AML) and a shortened life expectancy. METHODS: Because natural histories of PMF and SMF are different, we studied by targeted next generation sequencing the differences in the molecular landscape of 86 PMF and 59 SMF and compared their prognosis impact. RESULTS: PMF had more ASXL1 (47.7%) and SRSF2 (14%) gene mutations than SMF (respectively 27.1% and 3.4%, P = .04). Poorer survival was associated with RNA splicing mutations (especially SRSF2) and TP53 in PMF (P = .0003), and with ASXL1 and TP53 mutations in SMF (P < .0001). These mutations of poor prognosis were associated with biological features of scoring systems (DIPSS and MYSEC-PM score). Mutations in TP53/SRSF2 in PMF or TP53/ASXL1 in SMF were more frequent as the risk of these scores increased. This allowed for a better stratification of MF patients, especially within the DIPSS intermediate-1 risk group (DIPSS) or the MYSEC-PM high risk group. AML transformation occurred faster in SMF than in PMF and patients who transformed to AML were more SRSF2-mutated and less CALR-mutated at MF sampling. CONCLUSIONS: PMF and SMF have different but not specific molecular profiles and different prognosis depending on the molecular profile. This may be due to differences in disease history. Combining mutations and existing scores should improve prognosis assessment

    A coupled model for healthy and cancerous cells dynamics in Acute Myeloid Leukemia

    Get PDF
    In this paper we propose a coupled model for healthy and cancerous cell dynamics in Acute Myeloid Leukemia. The PDE-based model is transformed to a nonlinear distributed delay system. For an equilibrium point of interest, necessary and sufficient conditions of local asymptotic stability are given. Simulation examples are given to illustrate the results. © IFAC

    Detailed molecular characterisation of acute myeloid leukaemia with a normal karyotype using targeted DNA capture.

    Get PDF
    Advances in sequencing technologies are giving unprecedented insights into the spectrum of somatic mutations underlying acute myeloid leukaemia with a normal karyotype (AML-NK). It is clear that the prognosis of individual patients is strongly influenced by the combination of mutations in their leukaemia and that many leukaemias are composed of multiple subclones, with differential susceptibilities to treatment. Here, we describe a method, employing targeted capture coupled with next-generation sequencing and tailored bioinformatic analysis, for the simultaneous study of 24 genes recurrently mutated in AML-NK. Mutational analysis was performed using open source software and an in-house script (Mutation Identification and Analysis Software), which identified dominant clone mutations with 100% specificity. In each of seven cases of AML-NK studied, we identified and verified mutations in 2-4 genes in the main leukaemic clone. Additionally, high sequencing depth enabled us to identify putative subclonal mutations and detect leukaemia-specific mutations in DNA from remission marrow. Finally, we used normalised read depths to detect copy number changes and identified and subsequently verified a tandem duplication of exons 2-9 of MLL and at least one deletion involving PTEN. This methodology reliably detects sequence and copy number mutations, and can thus greatly facilitate the classification, clinical research, diagnosis and management of AML-NK

    Vocal Accuracy and Neural Plasticity Following Micromelody-Discrimination Training

    Get PDF
    Recent behavioral studies report correlational evidence to suggest that non-musicians with good pitch discrimination sing more accurately than those with poorer auditory skills. However, other studies have reported a dissociation between perceptual and vocal production skills. In order to elucidate the relationship between auditory discrimination skills and vocal accuracy, we administered an auditory-discrimination training paradigm to a group of non-musicians to determine whether training-enhanced auditory discrimination would specifically result in improved vocal accuracy.We utilized micromelodies (i.e., melodies with seven different interval scales, each smaller than a semitone) as the main stimuli for auditory discrimination training and testing, and we used single-note and melodic singing tasks to assess vocal accuracy in two groups of non-musicians (experimental and control). To determine if any training-induced improvements in vocal accuracy would be accompanied by related modulations in cortical activity during singing, the experimental group of non-musicians also performed the singing tasks while undergoing functional magnetic resonance imaging (fMRI). Following training, the experimental group exhibited significant enhancements in micromelody discrimination compared to controls. However, we did not observe a correlated improvement in vocal accuracy during single-note or melodic singing, nor did we detect any training-induced changes in activity within brain regions associated with singing.Given the observations from our auditory training regimen, we therefore conclude that perceptual discrimination training alone is not sufficient to improve vocal accuracy in non-musicians, supporting the suggested dissociation between auditory perception and vocal production

    Tet2 disruption leads to enhanced self-renewal and altered differentiation of fetal liver hematopoietic stem cells

    Get PDF
    Somatic mutation of ten-eleven translocation 2 (TET2) gene is frequently found in human myeloid malignancies. Recent reports showed that loss of Tet2 led to pleiotropic hematopoietic abnormalities including increased competitive repopulating capacity of bone marrow (BM) HSCs and myeloid transformation. However, precise impact of Tet2 loss on the function of fetal liver (FL) HSCs has not been examined. Here we show that disruption of Tet2 results in the expansion of Lin−Sca-1+c-Kit+ (LSK) cells in FL. Furthermore, Tet2 loss led to enhanced self-renewal and long-term repopulating capacity of FL-HSCs in in vivo serial transplantation assay. Disruption of Tet2 in FL also led to altered differentiation of mature blood cells, expansion of common myeloid progenitors and increased resistance for hematopoietic progenitor cells (HPCs) to differentiation stimuli in vitro. These results demonstrate that Tet2 plays a critical role in homeostasis of HSCs and HPCs not only in the BM, but also in FL

    Quantitative assay for the detection of the V617F variant in the Janus kinase 2 (JAK2) gene using the Luminex xMAP technology

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The availability of clinically valid biomarkers contribute to improve the diagnosis and clinical management of diseases. A valine-to-phenylalanine substitution at position 617 (V617F) in the Janus kinase 2 (JAK2) gene has been recently associated with key signaling abnormalities in the transduction of haemopoietic growth-factor receptors and is now considered as a useful clinical marker of myeloproliferative neoplasms. Several methods have recently been reported to detect the JAK2 V617F point mutation and show variable sensitivity.</p> <p>Methods</p> <p>Using the Luminex xMAP technology, we developed a quantitative assay to detect the JAK2V617F variant. The method was based on polymerase chain reaction (PCR) followed by hybridization to specific probes coupled with internally dyed microspheres. The assay comprises 3 steps: genomic DNA extraction, end point PCR reaction, direct hybridization of PCR fragments and quantification. It has been tested with different sources of nucleic acid.</p> <p>Results</p> <p>Applied to whole blood samples, this quantitative assay showed a limit of detection of 2%. A highly sensitive allele-specific primer extension reaction performed in parallel allowed to validate the results and to identify the specimens with values below 2%.</p> <p>Conclusion</p> <p>Direct hybridization assay using the Luminex xMAP technology allows sensitive quantification of JAK2V617F from blood spots. It is simple and can be easily performed in a clinical setting.</p

    The C allele of JAK2 rs4495487 is an additional candidate locus that contributes to myeloproliferative neoplasm predisposition in the Japanese population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF) are myeloproliferative neoplasms (MPNs) characterized in most cases by a unique somatic mutation, <it>JAK2 </it>V617F. Recent studies revealed that <it>JAK2 </it>V617F occurs more frequently in a specific <it>JAK2 </it>haplotype, named <it>JAK2 </it>46/1 or GGCC haplotype, which is tagged by rs10974944 (C/G) and/or rs12343867 (T/C). This study examined the impact of single nucleotide polymorphisms (SNPs) of the <it>JAK2 </it>locus on MPNs in a Japanese population.</p> <p>Methods</p> <p>We sequenced 24 <it>JAK2 </it>SNPs in Japanese patients with PV. We then genotyped 138 MPN patients (33 PV, 96 ET, and 9 PMF) with known <it>JAK2 </it>mutational status and 107 controls for a novel SNP, in addition to two SNPs known to be part of the 46/1 haplotype (rs10974944 and rs12343867). Associations with risk of MPN were estimated by odds ratios and their 95% confidence intervals using logistic regression.</p> <p>Results</p> <p>A novel locus, rs4495487 (T/C), with a mutated T allele was significantly associated with PV. Similar to rs10974944 and rs12343867, rs4495487 in the <it>JAK2 </it>locus is significantly associated with <it>JAK2</it>-positive MPN. Based on the results of SNP analysis of the three <it>JAK2 </it>locus, we defined the "GCC genotype" as having at least one minor allele in each SNP (G allele in rs10974944, C allele in rs4495487, and C allele in rs12343867). The GCC genotype was associated with increased risk of both <it>JAK2 </it>V617F-positive and <it>JAK2 </it>V617F-negative MPN. In ET patients, leukocyte count and hemoglobin were significantly associated with <it>JAK2 </it>V617F, rather than the GCC genotype. In contrast, none of the <it>JAK2 </it>V617F-negative ET patients without the GCC genotype had thrombosis, and splenomegaly was frequently seen in this subset of ET patients. PV patients without the GCC genotype were significantly associated with high platelet count.</p> <p>Conclusions</p> <p>Our results indicate that the C allele of <it>JAK2 </it>rs4495487, in addition to the 46/1 haplotype, contributes significantly to the occurrence of <it>JAK2 </it>V617F-positive and <it>JAK2 </it>V617F-negative MPNs in the Japanese population. Because lack of the GCC genotype represents a distinct clinical-hematological subset of MPN, analyzing <it>JAK2 </it>SNPs and quantifying <it>JAK2 </it>V617F mutations will provide further insights into the molecular pathogenesis of MPN.</p

    IDH1 and IDH2 mutation studies in 1473 patients with chronic-, fibrotic- or blast-phase essential thrombocythemia, polycythemia vera or myelofibrosis

    Get PDF
    In a multi-institutional collaborative project, 1473 patients with myeloproliferative neoplasms (MPN) were screened for isocitrate dehydrogenase 1 (IDH1)/IDH2 mutations: 594 essential thrombocythemia (ET), 421 polycythemia vera (PV), 312 primary myelofibrosis (PMF), 95 post-PV/ET MF and 51 blast-phase MPN. A total of 38 IDH mutations (18 IDH1-R132, 19 IDH2-R140 and 1 IDH2-R172) were detected: 5 (0.8%) ET, 8 (1.9%) PV, 13 (4.2%) PMF, 1 (1%) post-PV/ET MF and 11 (21.6%) blast-phase MPN (P<0.01). Mutant IDH was documented in the presence or absence of JAK2, MPL and TET2 mutations, with similar mutational frequencies. However, IDH-mutated patients were more likely to be nullizygous for JAK2 46/1 haplotype, especially in PMF (P=0.04), and less likely to display complex karyotype, in blast-phase disease (P<0.01). In chronic-phase PMF, JAK2 46/1 haplotype nullizygosity (P<0.01; hazard ratio (HR) 2.9, 95% confidence interval (CI) 1.7–5.2), but not IDH mutational status (P=0.55; HR 1.3, 95% CI 0.5–3.4), had an adverse effect on survival. This was confirmed by multivariable analysis. In contrast, in both blast-phase PMF (P=0.04) and blast-phase MPN (P=0.01), the presence of an IDH mutation predicted worse survival. The current study clarifies disease- and stage-specific IDH mutation incidence and prognostic relevance in MPN and provides additional evidence for the biological effect of distinct JAK2 haplotypes

    Loss of Function of TET2 Cooperates with Constitutively Active KIT in Murine and Human Models of Mastocytosis

    Get PDF
    Systemic Mastocytosis (SM) is a clonal disease characterized by abnormal accumulation of mast cells in multiple organs. Clinical presentations of the disease vary widely from indolent to aggressive forms, and to the exceedingly rare mast cell leukemia. Current treatment of aggressive SM and mast cell leukemia is unsatisfactory. An imatinib-resistant activating mutation of the receptor tyrosine kinase KIT (KIT D816V) is most frequently present in transformed mast cells and is associated with all clinical forms of the disease. Thus the etiology of the variable clinical aggressiveness of abnormal mast cells in SM is unclear. TET2 appears to be mutated in primary human samples in aggressive types of SM, suggesting a possible role in disease modification. In this report, we demonstrate the cooperation between KIT D816V and loss of function of TET2 in mast cell transformation and demonstrate a more aggressive phenotype in a murine model of SM when both mutations are present in progenitor cells. We exploit these findings to validate a combination treatment strategy targeting the epigenetic deregulation caused by loss of TET2 and the constitutively active KIT receptor for the treatment of patients with aggressive SM
    corecore