13 research outputs found

    Evaluation of chromosome organization and microtubule arrangement in goat (capra aegragrus) oocytes after vitrification, in vitro maturation and fertilization, and early embryo development

    Get PDF
    Objective: Evaluate the use of Ethylene Glycol (EG), Dimethyl Sulfoxide (DMSO), Sucrose and Fetal Bovine Serum (FBS) as cryoprotectants and their effect on the organization of chromosomes and the arrangement of microtubules, during the vitrification process in goat oocytes matured in vitro and in the development of preimplantation embryos produced in vitro. Design/methodology/approach: In vitro matured oocytes were divided into 3 groups (control group, cryoprotectant exposed group, vitrified group). A mixture of 15% EG, 15% DMSO, 0.4 M sucrose and 20% FBS was used for the vitrification using the Cryotop device. In vitro matured oocytes were warmed and afterwards each group was divided into two more groups. Both groups were subjected to immunofluorescence, the first group to observe the damage produced to the chromosomes and microtubules and the second group to observe the effect on the in vitro embryo development. Results: The combined use of 15% EG, 15% DMSO, 0.4 M Sucrose and 20% FBS during vitrification did not prevent cryoinjuries in goat oocytes and in vitro produced embryos, since embryo development was disrupted before the blastocyst stage by stopping cleavage at the morula stage. This disruption was associated with chromosome decondensation and the absence of a microtubule network, thereby hindering chromosomal segregation. Limitations on study/implications: The effect of conventional cryoprotectants on chromosomes and microtubules arrangement on vitrified goat oocytes and in vitro embryo production. Findings/conclusions: The combined use of 15% EG, 15% DMSO, 0.4 M sucrose and 20% FBS as vitrification cryoprotectants did not prevent cryoinjuries in caprine oocytes and did not improve caprine embryo development in vitro

    Nrf2 protects the lung against inflammation induced by titanium dioxide nanoparticles: A positive regulator role of Nrf2 on cytokine release

    No full text
    et al.Titanium dioxide nanoparticles (TiO2 NPs) have been classified as possibly carcinogenic to humans and they are an important nanomaterial widely used in pharmaceutical and paint industries. Inhalation is one of the most important routes of exposure in occupational settings. Several experimental models have shown that oxidative stress and inflammation are key mediators of cell damage. In this regard, Nrf2 modulates cytoprotection against oxidative stress and inflammation, however, its role in inflammation induced by TiO2 NPs exposure has been less investigated. The aim of this work was to investigate the role of Nrf2 in the cytokines produced after 4 weeks of TiO2 NPs exposure (5 mg/kg/2 days/week) using wild-type and Nrf2 knockout C57bl6 mice. Results showed that Nrf2 protects against inflammation and oxidative damage induced by TiO2 NPs exposure, however, Nrf2 is a positive mediator in the expression of IFN-γ, TNF-α, and TGF-β in bronchial epithelium and alveolar space after 4 weeks of exposure. These results suggest that Nrf2 has a central role in up-regulation of cytokines released during inflammation induced by TiO2 NPs and those cytokines are needed to cope with histological alterations in lung tissue.Funded by: CONACyT. Grant Numbers: 166727, 129838; DGAPA PAPIIT. Grant Numbers: IB201112, IN210713; Spanish Ministry of Economy and Competitiveness. Grant Number: SAF2010-17822; FES-Iztacala. Grant Number: Project 28; CONACyT and Escuela Nacional de Ciencias Biológicas at Instituto Politécnico Nacional (Doctorado en Ciencias en Alimentos). Grant Number: 202805.Peer Reviewe

    Deficiency in STAT1 Signaling Predisposes Gut Inflammation and Prompts Colorectal Cancer Development

    No full text
    Signal transducer and activator of transcription 1 (STAT1) is part of the Janus kinase (JAK/STAT) signaling pathway that controls critical events in intestinal immune function related to innate and adaptive immunity. Recent studies have implicated STAT1 in tumor–stroma interactions, and its expression and activity are perturbed during colon cancer. However, the role of STAT1 during the initiation of inflammation-associated cancer is not clearly understood. To determine the role of STAT1 in colitis-associated colorectal cancer (CAC), we analyzed the tumor development and kinetics of cell recruitment in wild-type WT or STAT1−/− mice treated with azoxymethane (AOM) and dextran sodium sulfate (DSS). Following CAC induction, STAT1−/− mice displayed an accelerated appearance of inflammation and tumor formation, and increased damage and scores on the disease activity index (DAI) as early as 20 days after AOM-DSS exposure compared to their WT counterparts. STAT1−/− mice showed elevated colonic epithelial cell proliferation in early stages of injury-induced tumor formation and decreased apoptosis in advanced tumors with over-expression of the anti-apoptotic protein Bcl2 at the colon. STAT1−/− mice showed increased accumulation of Ly6G+Ly6C−CD11b+ cells in the spleen at 20 days of CAC development with concomitant increases in the production of IL-17A, IL-17F, and IL-22 cytokines compared to WT mice. Our findings suggest that STAT1 plays a role as a tumor suppressor molecule in inflammation-associated carcinogenesis, particularly during the very early stages of CAC initiation, modulating immune responses as well as controlling mechanisms such as apoptosis and cell proliferation

    Differences in cytotoxicity of lung epithelial cells exposed to titanium dioxide nanofibers and nanoparticles: Comparison of air-liquid interface and submerged cell cultures.

    No full text
    Air Liquid Interface (ALI) system has emerged as a useful tool for toxicity evaluation of nanomaterials related to inhalation since the system mimics the aerosol exposure. We compared the biological responses of lung epithelial cells exposed to titanium dioxide (TiO2) nanofibers and nanoparticles in ALI and submerged cell cultures systems. Cells were exposed to 2 and 10 μg/cm2 for 24 h, 48 h and 72 h and LDH release, TiO2 internalization, DNA-double strand breaks (DSBs) and ROS production were assessed. LDH release was similar in both systems and particles had higher cytoplasmic uptake in submerged systems. Both TiO2 types were located in the cytoplasm but nanofibers had nuclear uptake regardless to the system tested. Cells exposed to TiO2 nanofibers had higher DSBs in the ALI system than in submerged cell cultures but cells exposed to TiO2 nanoparticles had similar DSBs in both systems. ROS production was higher in cells exposed to TiO2 nanofibers compared to cells exposed to TiO2 nanoparticles. In conclusion, cytotoxicity of lung epithelial cells was similar in ALI or submerged cell cultures, however cells exposed to TiO2 nanofibers displayed higher toxicity than cells exposed to TiO2 nanoparticles

    The Effects of the Food Additive Titanium Dioxide (E171) on Tumor Formation and Gene Expression in the Colon of a Transgenic Mouse Model for Colorectal Cancer

    No full text
    Titanium dioxide (TiO2) is present in many different food products as the food additive E171, which is currently scrutinized due to its potential adverse effects, including the stimulation of tumor formation in the gastrointestinal tract. We developed a transgenic mouse model to examine the effects of E171 on colorectal cancer (CRC), using the Cre-LoxP system to create an Apc-gene-knockout model which spontaneously develops colorectal tumors. A pilot study showed that E171 exposed mice developed colorectal adenocarcinomas, which were accompanied by enhanced hyperplasia in epithelial cells, and increased tumor size. In the main study, tumor formation was studied following the exposure to 5 mg/kgbw/day of E171 for 9 weeks (Phase I). E171 exposure showed a statistically nonsignificant increase in the number of colorectal tumors in these transgenic mice, as well as a statistically nonsignificant increase in the average number of mice with tumors. Gene expression changes in the colon were analyzed after exposure to 1, 2, and 5 mg/kgbw/day of E171 for 2, 7, 14, and 21 days (Phase II). Whole-genome mRNA analysis revealed the modulation of genes in pathways involved in the regulation of gene expression, cell cycle, post-translational modification, nuclear receptor signaling, and circadian rhythm. The processes associated with these genes might be involved in the enhanced tumor formation and suggest that E171 may contribute to tumor formation and progression by modulation of events related to inflammation, activation of immune responses, cell cycle, and cancer signaling

    Use of STAT6 Phosphorylation Inhibitor and Trimethylglycine as New Adjuvant Therapies for 5-Fluorouracil in Colitis-Associated Tumorigenesis

    No full text
    Colorectal cancer (CRC) is one of the most widespread and deadly types of neoplasia around the world, where the inflammatory microenvironment has critical importance in the process of tumor growth, metastasis, and drug resistance. Despite its limited effectiveness, 5-fluorouracil (5-FU) is the main drug utilized for CRC treatment. The combination of 5-FU with other agents modestly increases its effectiveness in patients. Here, we evaluated the anti-inflammatory Trimethylglycine and the Signal transducer and activator of transcription (STAT6) inhibitor AS1517499, as possible adjuvants to 5-FU in already established cancers, using a model of colitis-associated colon cancer (CAC). We found that these adjuvant therapies induced a remarkable reduction of tumor growth when administrated together with 5-FU, correlating with a reduction in STAT6-phosphorylation. This reduction upgraded the effect of 5-FU by increasing both levels of apoptosis and markers of cell adhesion such as E-cadherin, whereas decreased epithelial–mesenchymal transition markers were associated with aggressive phenotypes and drug resistance, such as β-catenin nuclear translocation and Zinc finger protein SNAI1 (SNAI1). Additionally, Il-10, Tgf-β, and Il-17a, critical pro-tumorigenic cytokines, were downmodulated in the colon by these adjuvant therapies. In vitro assays on human colon cancer cells showed that Trimethylglycine also reduced STAT6-phosphorylation. Our study is relatively unique in focusing on the effects of the combined administration of AS1517499 and Trimethylglycine together with 5-FU on already established CAC which synergizes to markedly reduce the colon tumor load. Together, these data point to STAT6 as a valuable target for adjuvant therapy in colon cancer

    Mexican Colorectal Cancer Research Consortium (MEX-CCRC): Etiology, Diagnosis/Prognosis, and Innovative Therapies

    No full text
    In 2013, recognizing that Colorectal Cancer (CRC) is the second leading cause of death by cancer worldwide and that it was a neglected disease increasing rapidly in Mexico, the community of researchers at the Biomedicine Research Unit of the Facultad de Estudios Superiores Iztacala from the Universidad Nacional Autónoma de México (UNAM) established an intramural consortium that involves a multidisciplinary group of researchers, technicians, and postgraduate students to contribute to the understanding of this pathology in Mexico. This article is about the work developed by the Mexican Colorectal Cancer Research Consortium (MEX-CCRC): how the Consortium was created, its members, and its short- and long-term goals. Moreover, it is a narrative of the accomplishments of this project. Finally, we reflect on possible strategies against CRC in Mexico and contrast all the data presented with another international strategy to prevent and treat CRC. We believe that the Consortium’s characteristics must be maintained to initiate a national strategy, and the reported data could be useful to establish future collaborations with other countries in Latin America and the world
    corecore