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ABSTRACT
Objective: Evaluate the use of Ethylene Glycol (EG), Dimethyl Sulfoxide (DMSO), Sucrose and Fetal Bovine 
Serum (FBS) as cryoprotectants and their effect on the organization of chromosomes and the arrangement 
of microtubules, during the vitrification process in goat oocytes matured in vitro and in the development of 
preimplantation embryos produced in vitro.
Design/methodology/approach: In vitro matured oocytes were divided into 3 groups (control group, 
cryoprotectant exposed group, vitrified group). A mixture of 15% EG, 15% DMSO, 0.4 M sucrose and 20% 
FBS was used for the vitrification using the Cryotop device. In vitro matured oocytes were warmed and 
afterwards each group was divided into two more groups. Both groups were subjected to immunofluorescence, 
the first group to observe the damage produced to the chromosomes and microtubules and the second group 
to observe the effect on the in vitro embryo development.
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Results: The combined use of 15% EG, 15% DMSO, 0.4 M Sucrose and 20% FBS during vitrification did not 
prevent cryoinjuries in goat oocytes and in vitro produced embryos, since embryo development was disrupted 
before the blastocyst stage by stopping cleavage at the morula stage. This disruption was associated with 
chromosome decondensation and the absence of a microtubule network, thereby hindering chromosomal 
segregation.
Limitations on study/implications: The effect of conventional cryoprotectants on chromosomes and 
microtubules arrangement on vitrified goat oocytes and in vitro embryo production.
Findings/conclusions: The combined use of 15% EG, 15% DMSO, 0.4 M sucrose and 20% FBS as 
vitrification cryoprotectants did not prevent cryoinjuries in caprine oocytes and did not improve caprine 
embryo development in vitro.

Keywords: Caprine, cryopreservation, in vitro embryo production, microtubules, oocytes.

INTRODUCTION
 Oocyte cryopreservation is an artificial reproductive technology widely used to 
preserve fertility in different species. In addition, oocyte cryopreservation can be used for 
the preservation of species in danger of extinction and the improvement of species and 
breeds intended for meat, milk or wool production. Vitrification, can be used to preserve 
gametes and embryos at different stages of maturation, causing less damage to the cells, 
compared to freezing, due to the formation of ice crystals that have been correlated with a 
decrease in the fertilization rate, which could affect the development of the embryo and its 
implantation (Yurchuk et al., 2018). The vitrification method has different levels of success 
among oocytes of different species. In fact, the oocytes show different tolerances to the 
cryoprotectants used in the vitrification procedures (Sudiman et al., 2019). With regard 
to oocytes, the most reported alterations during cryopreservation are interruptions of the 
tubulin network, meiotic spindle disorganization, abnormal chromosomal distributions 
and a reduced in vitro fertilization rate (Tamura et al., 2013, Lei et al., 2014, Serra et al., 
2020), probably caused by the increase in aneuploidy (Buderatska et al., 2020, Dviri et al., 
2021), genomic alterations that entail structural (Gao et al., 2018, Wasielak-Politowska et 
al., 2022) and biochemical changes (Ren et al., 2019, Tsuiko et al., 2019) that compromise 
cell viability even to the point of cell death (Balboula et al., 2020, Vining et al., 2021).
 The composition of cryopreservation solutions plays a crucial role in the outcome 
of cell preservation between different species. Notably, goat oocytes are particularly 
susceptible to cell damage during vitrification (Youm et al., 2014, Marques et al., 2018). 
At present, there is no foolproof mix of successful chemicals for vitrification and there is 
still a need to clarify the optimal cryoprotective composition for goat oocyte preservation. 
Some compounds such as Dimethyl Sulfoxide (DMSO) and Fetal Bovine Serum (FBS) are 
regularly used in preservation media (Moawad et al., 2012, Guo et al., 2017) in different 
species (Fernández-Reyes et al., 2012, Arcarons et al., 2016), however, the proportion 
of these varies greatly in the literature, some of them associate it with toxicity at high 
concentrations (Awan et al., 2020). The objective of the present study was to evaluate 
the effect of the combined use of Ethylene Glycol, DMSO, Sucrose and FBS to goat 
oocytes matured in vitro and to preimplantation embryos developed in vitro, concerning 
the organization of chromosomes and the arrangement of microtubules, during the 
vitrification process with the Cryotop device.
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MATERIALS AND METHODS
Goat oocyte collection and in vitro maturation
 Goat ovaries were obtained from a meat processing plant, from adult females. The 
ovaries were transported to the laboratory at 35 °C in isotonic saline solution (0.9% 
NaCl) supplemented with 100 IU/mL Penicillin and 0.1 mg Streptomycin (Sigma 
Aldrich, St. Louis, MO, USA). After 2 hours of transport, the ovaries were washed with 
isotonic saline solution and the cumulus-oocyte complexes (COC) were recovered from 
the ovarian follicles by follicular puncture using the technique reported by Chaves et al. 
in 2017, follicles with diameters between 2 and 8 mm were aspirated and then deposited 
in drops of saline physiological solution to select only COCs with uniform cytoplasm 
and more than 3 layers of cumulus cells, which were deposited in the in vitro maturation 
medium.
 Groups of 30-35 COC were incubated in Petri dishes with drops of 100 L of maturation 
medium (TCM (Tissue Culture Medium, In vitro S.A., México), supplemented with 0.3% 
BSA (Albumin Bovine Serum, Sigma Aldrich, USA), 5 L/mL Follicle Stimulating Hormone 
(FSH; Sigma Aldrich, USA), 5 L/mL Luteinizing Hormone (LH, Sigma Aldrich, USA), 
0.32 mM Pyruvic Acid (Sigma Aldrich, USA), 10 L/mL Penicillin-Streptomycin (P/E; 
Sigma Aldrich, USA)) (Izquierdo et al., 2002) and then covered with mineral oil (Sigma 
Aldrich, USA). The samples were incubated at 38.5 °C in an atmosphere of 5% CO2 in 
95% air, with 95% humidity, for a total time of 27 h. 

Oocytes vitrification and warming
 Vitrification of in vitro cultured oocytes was performed by using a Cryotop device 
(Kuwayama et al., 2005; Kuwayama, 2007; Liang et al., 2012). First, oocytes were 
randomly divided into three groups: a) control (untreated oocytes), b) exposed (non-
vitrified oocytes in cryoprotectant medium) and c) vitrified (vitrified cryoprotected 
oocytes). Exposed and vitrified oocytes were washed with 500 L TL- HEPES buffer (In 
vitro S.A, México) and transferred into 300 L holding medium (TCM-199 with Hepes; 
In Vitro S.A, México) supplemented with 20% FBS (38 °C for 5 min) (Gibco, USA) 
(Morató et al., 2008; Purohit et al., 2012). Next, groups of four oocytes were placed into 
droplets with 5 L of equilibrated solution, a mixture of holding medium and 7.5% EG 
(Sigma Aldrich, USA), 7.5% DMSO (Sigma Aldrich, USA), at 38 °C for 9 min. Finally, 
oocytes were added immediately to the vitrification solution consisting of holding 
medium with 15% EG, 15% DMSO and 0.4 M sucrose (Sigma Aldrich, USA) for 1 min 
at 38 °C (Begin et al., 2003; Morató & Mogas, 2014). 
 Only the vitrified group of oocytes was plunged into the liquid nitrogen (during 2 h). 
For warming, the tip of the Cryotop device was submerged in 3 mL of base medium 
supplemented with 0.5 M sucrose for 1 min at 38 °C. Then, the oocytes were recovered 
and washed for 3 min in four well dishes containing a 0.3, 0.25 and 0.125 M sucrose, to 
remove the cryoprotectants, followed by washing oocytes with holding medium and then 
incubated at 38 °C to complete 27 h of total incubation in maturation medium (Morató & 
Mogas, 2014).



60 Agro productividad 2022. https://doi.org/10.32854/agrop.v15i11.2420

In vitro fertilization and embryo development analysis
 Before fertilization, 20 to 30 oocytes were washed and incubated with 100 L of in vitro 
fertilization medium (Vitrogen, Brazil). Frozen-thawed buck semen in 0.25 mL straws was 
used in the experiment. A higher concentration of motile spermatozoa was obtained using a 
discontinuous Percoll (Sigma Aldrich, USA) density gradient (45:90). The centrifugation of 
semen was carried out for 20 min at 360 g, and viable spermatozoa were located primarily 
in the sperm pellet at the bottom of the gradient. For capacitation, the motile spermatozoa 
were suspended in fertilization medium to achieve a final concentration of (1106 cells/
mL) and incubated at 38.5 °C with 95% humidity and 5% CO2 in air for 30 min. Both, 
spermatozoa and COC were incubated with fertilization medium for 18 h at 38.5 °C 
(Albarracín et al., 2005).
 After fertilization (Day 0), the presumptive zygotes were washed with PBS and denuded 
by gentle pipetting with embryo culture medium (Vitrogen, Cravinhos, SP, Brazil). Then, 
a maximum of 10 embryos were incubated in a drop with 10 l embryo culture medium, 
5 drops per dish and covered with 3 mL mineral oil for 7 d at 38.5 °C with 95% humidity 
and an atmosphere of 5% CO2 in air. Cleavage stage rate was evaluated at 48 h post-
fertilization, embryos with more than 6 cells were evaluated at 72 h post-fertilization, and 
the morulae stage rate was evaluated at 96 h, blastocyst stage rate was evaluated on days 5 
to 7 post fertilization.

Oocyte immunostaining 
 The COC were disaggregated by pipetting in order to obtain the oocytes. Then, the 
oocytes were fixed with 2% paraformaldehyde for 72 h, permeabilized with 1% Triton 
X-100 (v/v) in PBS at 37 °C for 25 min and blocked with 1% BSA at room temperature 
for 15 min. Next the oocytes were incubated with anti-α-tubulin coupled to Alexa-Fluor 
488 (dilution 1:250; Thermo-Fisher, USA) at 4 °C overnight. Afterwards, the oocytes 
were washed three times with PBS and stained with DAPI (Sigma Aldrich, USA). Finally, 
10 oocytes were placed on poly-L-lysine-treated slides and preserved with PBS:Glycerol 
(1:3). The images were obtained by a confocal microscope (Leica SP8, Wetzlar, Germany) 
at 63X magnification. The chromosome and microtubule criteria were based on the 
previous report by Albarracín et al. (2005). Brief ly, normal spindle morphology was 
considered symmetrical, barrel-shaped, lacking astral microtubules and a metaphase 
plate diameter longer than the pole-pole distance. Spindle structure was regarded as 
disorganized if there was microtubule disruption, partial or total disorganization, while 
the absent classification equated to a complete lack of microtubules. For chromosomes, the 
standard organization was classified as chromosomes arranged on a compact metaphase 
plate at the equator of the structure. Chromosomes were classified as dispersed if they 
were disorganized (chromosomes misaligned at the metaphase plate) aberrant if not 
structured as a standard chromosome, and decondensed if a prominent less condensed 
appearance was observed (Albarracín et al., 2005).
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Statistical analysis 
 A two-way analysis of variance (ANOVA) was used to examine differences in chromosomes 
and microtubule classifications. Oneαway ANOVA was used to analyze differences for 
all the remaining variables. The ANOVA analysis was followed by a Bonferroni test for 
differences between means. The data are presented as mean  standard error. Statistical 
significance was set at 0.01. All data analyses were performed using the GraphPad 
Software, version 6.

RESULTS 
 A total of 304 oocytes were evaluated for immunostaining. Both, the chromosomal 
organization and the spindle morphology were observed in all of the groups.

Chromosomal organization and microtubule arrangement in goat oocytes 
after vitrification
 The chromosomes and microtubules were well organized in the control group forming 
a well-defined meiotic spindle; however, they were disorganized in both the exposed 
and Cryotop vitrified oocytes (p0.01) (Figure 1A. Representative micrographs). The 
evaluation of in vitro matured oocytes presenting different chromosomal organization 
patterns showed 49.8% with normal chromosomes, 33.15% with dispersed chromosomes 
and 17.01% with decondensed chromosomes in the control group, this distribution 
was similar for exposed oocytes (51.09%, 28.47% and 20.43% with normal, dispersed 
and decondensed chromosomes, respectively) with no statistical differences compared 
to the control group. Vitrified oocytes did not show a statistical difference in the 
numbers of normal and dispersed chromosomes (39.6% and 23.99%, respectively) but 
had a significant increase of 42.36% decondensed chromosomes (p0.01) (Figure 1B. 
Percentage of normal, dispersed and decondensed chromosomes). The evaluation of 
microtubule organization of the in vitro matured oocytes after vitrification resulted in 
45.2% with the typical microtubule network, 33.59% with disorganized microtubules 
and 21.17% with absent microtubules in the control group. Exposed oocytes had no 
statistical difference compared to the control group, i.e., 26.15% normal microtubules 
(and 34.73% disorganized microtubules but the percentage of absent microtubules 
was statistically different (39.12%) (p0.01). The vitrified oocyte group had 20.99% 
normal microtubules, significantly lower than the control group (p0.01), and 46.22% 
with absent microtubules, which was also statistically different from the control group. 
Notably, there were no statistical differences concerning percentages of disorganized 
microtubules for any groups (Figure 1C. Percentages of normal, disorganized and absent 
microtubule oocytes). 

Embryo development after goat vitrified oocyte fertilization
 The embryo development 48-h post-fertilization was followed (Figure 2. Embryo 
development). The cleavage in oocytes was significantly reduced (p0.01) from 54.7% in 
the control group to 36.6% in exposed and to 21.3% in vitrified oocytes (Figure 2B. Cleavage 
stage). In addition, the 6 cells stage was also reduced from 36.3% in the control group 
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Figure 1. Oocyte vitrification increases metaphase plate disorganization and disrupts microtubule formation. 
A) Representative micrographs of the evaluated oocytes of the control and vitrified group, the DNA of the 
chromosomes are stained with DAPI (blue color) and beta-tubulin in the microtubules (green color). A) shows 
the barrel-shaped formation without the presence of chromosomes in any microtubule, a pattern that was 
found in a higher percentage in the control group (A1). While different patterns were found in the vitrified 
oocytes, they show an erratic arrangement (A2) and scattered decondensed chromosomes as seen in the last 
panel (A3). B) Percentage of normal chromosomes, dispersed chromosomes and decondensed chromosomes of 
each group. C) Percentages of normal, disorganized and absent microtubule oocytes in the group. Data show 
media  standard error of three independent experiments. **p0.01 vs. untreated oocytes.

A Chromosome Microtubule Merge

Control 
group

Exposed
oocytes

Vitrified
oocytes

to 11.2% and 6.6% in non-vitrified cryoprotected oocytes, respectively (Figure 2C. 6 
cells stage) The morulae stage was also affected, and it was reduced from 19.2% in control 
group to 0.7% and 0.1% in exposed and vitrified oocytes, respectively (Figure 2D. Morulae 
stage) The blastocyst stage was only achieved in the control group, since no embryos were 
observed at this stage using exposed and vitrified oocytes (Figure 2E. Blastocyst stage).

Discussion
 The rationale for animal gamete cryopreservation lies not only in preventing the 
extinction of many different species, but other motivations are also relevant including 
economic reasons, cultural identity, social role, environmental importance and scientific 
purposes for the benefit of humans (Kukovics, 2016). The scientific literature demonstrates 
a higher degree of knowledge in oocyte cryopreservation for livestock such as cow, pigs, 
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Figure 2. Embryo development was affected in exposed oocytes and vitrified oocytes. A) Representative images of embryo stages after in vitro 
fertilization by inverted bright field microscopy. Embryo development at B) cleavage stage (48 h post-fertilization), C) 6 cells stage (72 h post-
fertilization), D) morulae stage (96 h post-fertilization) and E) blastocyst stage (5 days post fertilization) as quantified in the control group, exposed 
and vitrified goat oocytes. Data show media  standard error of three independent experiments. ***p0.01 vs. control group.

Cleavage + 6 cells Morulae Expanded hatched

Blastocyst

A

B C D E

sheep, and buffalo than for goat oocytes (Casillas et al., 2015; Kukovics., 2016, Chaves et 
al., 2017).
 In general, the failure in oocyte cryopreservation is related to the injury caused by 
cryoprotectants, with DMSO being one of them. In terms of cryopreservation, the reduction 
of DMSO has already been assessed. The use of 16% DMSO has been tested in other 
oocytes such as porcine oocytes (Casillas et al., 2015) and 15% in bovine oocytes (Arcarons 
et al., 2016) while the usage of 20% DMSO commonly used during cryopreservation, has 
not been successful for goat embryo development (Begin et al., 2003; Srirattana et al., 2013, 
Quan et al., 2014). Based on this, the DMSO was decreased to 15% but unfortunately, did 
not improve the rate of goat embryo development. 
 We also tested the 20% FBS addition to the cryoprotectant mixture since proteins 
contained in the FBS confer cell protection. Indeed, some other studies in livestock such as 
pigs showed that 20% FBS was successfully used in the cryoprotectant mixture (Fernández-
Reyes et al., 2012) but as demonstrated in this study, no benefit was found concerning goat 
oocyte cryopreservation. 
 The causes of goat embryo development failure during cryopreservation and vitrification 
have not been thoroughly investigated, but the alterations in chromosome segregation 
and microtubule networks are reported for human oocytes during cryopreservation 
(Bromfield et al., 2009). There is also evidence of cytoskeleton degeneration of cattle 
oocytes cryopreserved by liquid nitrogen (Guo et al., 2017). However, literature related to 
goat oocyte cryopreservation has not found a highly successful cryopreservation method. 
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Perhaps a description of cellular mechanism of embryo development failure during the 
current cryopreservation methods is needed first. We demonstrated that the use of 15% 
DMSO and the addition of 20% FBS did not improve embryo development, and this effect 
was associated with chromosomal defects and microtubule network disruption. Although, 
the result is not disappointing either, according to Wu et al., (2020) the use of 35% EG and 
20% FBS, can result in a good cleaved embryo percentage, i.e., 64.9% of cleaved embryos was 
relatively high. The two variables mentioned above, are crucial for embryo development. 
As it has been demonstrated, the oocyte meiotic spindle is responsible for chromosome 
segregation and this spindle depends on the microtubule network, and together they are a 
predictive marker of blastocyst ploidy in humans (Tilia et al., 2020). 
 In summary, the use of EG, the decreased percentage of DMSO and the addition 
of FBS did not improve the cryoprotectant mixture used for vitrification. Indeed, this 
modification probably was insufficient for preventing the ice-crystal formation during the 
subzero reached temperatures, which cause cryoinjuries (Yurchuk et al., 2018).
 Regarding the cryoprotectant composition, an alternative to test in future research is 
DMSO between 5% and 10% and such a concentration decrease might improve embryo 
development. Another alternative is to replace 20% FBS with lyophilized albumin between 
0.4% and 4% as has previously been tested in goat oocytes (Purohit et al., 2012). 

CONCLUSIONS
 The cryoprotectants and the cryopreservation by vitrification methods used in this 
study disrupted the goat embryo development. This effect was associated with disruption of 
DNA integrity, as was seen by alterations in chromosome structure and also, by disruption 
in the microtubule network. However, vitrified cryoprotected oocytes exhibited a higher 
degree of alterations in terms of oocyte cleavage, 6 cells stage at 72 h post-fertilization, 
decondensation of chromosomes and absence of a microtubule network compared with 
exposed oocytes. 
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