118 research outputs found

    Vegetation structure determines the spatial variability of soil biodiversity across biomes

    Get PDF
    The factors controlling the spatial variability of soil biodiversity remain largely undetermined. We conducted a global field survey to evaluate how and why the within-site spatial variability of soil biodiversity (i.e. richness and community composition) changes across global biomes with contrasting soil ages, climates and vegetation types. We found that the spatial variability of bacteria, fungi, protists, and invertebrates is positively correlated across ecosystems. We also show that the spatial variability of soil biodiversity is mainly controlled by changes in vegetation structure driven by soil age and aridity. Areas with high plant cover, but low spatial heterogeneity, were associated with low levels of spatial variability in soil biodiversity. Further, our work advances the existence of significant, undescribed links between the spatial variability of soil biodiversity and key ecosystem functions. Taken together, our findings indicate that reductions in plant cover (e.g., via desertification, increases in aridity, or deforestation), are likely to increase the spatial variability of multiple soil organisms and that such changes are likely to negatively impact ecosystem functioning across global biomes

    Forest plantations reduce soil functioning in terrestrial ecosystems from South Africa

    Get PDF
    The role of forest plantations in regulating soil ecosystem functions remains poorly understood in terrestrial ecosystems from Africa. Here, we evaluated the importance of forest plantations in regulating soil microbial functional profiles, community-level physiological profiles (CLPPs) and activities of soil microbial communities compared with native forests in two contrasting seasons. We found that forest plantations consistently reduced the rates of multiple soil functions associated with soil nutrient and carbon (C) cycling and shifted the activity and functional profile of microbial communities in two contrasting seasons and two independent regions from South Africa. Our results suggest land use changes from natural forests to plantations to maintain a continuously growing human population will have important negative consequences for soil functions in forest ecosystems from Africa with implications for ecosystem functioning under changing environments

    Trophic level drives the host microbiome of soil invertebrates at a continental scale

    Get PDF
    Background: Increasing our knowledge of soil biodiversity is fundamental to forecast changes in ecosystem functions under global change scenarios. All multicellular organisms are now known to be holobionts, containing large assemblages of microbial species. Soil fauna is now known to have thousands of species living within them. However, we know very little about the identity and function of host microbiome in contrasting soil faunal groups, across different terrestrial biomes, or at a large spatial scale. Here, we examined the microbiomes of multiple functionally important soil fauna in contrasting terrestrial ecosystems across China. Results: Different soil fauna had diverse and unique microbiomes, which were also distinct from those in surrounding soils. These unique microbiomes were maintained within taxa across diverse sampling sites and in contrasting terrestrial ecosystems. The microbiomes of nematodes, potworms, and earthworms were more difficult to predict using environmental data, compared to those of collembolans, oribatid mites, and predatory mites. Although stochastic processes were important, deterministic processes, such as host selection, also contributed to the assembly of unique microbiota in each taxon of soil fauna. Microbial biodiversity, unique microbial taxa, and microbial dark matter (defined as unidentified microbial taxa) all increased with trophic levels within the soil food web. Conclusions: Our findings demonstrate that soil animals are important as repositories of microbial biodiversity, and those at the top of the food web harbor more diverse and unique microbiomes. This hidden source of biodiversity is rarely considered in biodiversity and conservation debates and stresses the importance of preserving key soil invertebrates

    Consistent responses of soil microbial taxonomic and functional attributes to mercury pollution across China

    Get PDF
    Background: The ecological consequences of mercury (Hg) pollution—one of the major pollutants worldwide—on microbial taxonomic and functional attributes remain poorly understood and largely unexplored. Using soils from two typical Hg-impacted regions across China, here, we evaluated the role of Hg pollution in regulating bacterial abundance, diversity, and co-occurrence network. We also investigated the associations between Hg contents and the relative abundance of microbial functional genes by analyzing the soil metagenomes from a subset of those sites. Results: We found that soil Hg largely influenced the taxonomic and functional attributes of microbial communities in the two studied regions. In general, Hg pollution was negatively related to bacterial abundance, but positively related to the diversity of bacteria in two separate regions. We also found some consistent associations between soil Hg contents and the community composition of bacteria. For example, soil total Hg content was positively related to the relative abundance of Firmicutes and Bacteroidetes in both paddy and upland soils. In contrast, the methylmercury (MeHg) concentration was negatively correlated to the relative abundance of Nitrospirae in the two types of soils. Increases in soil Hg pollution correlated with drastic changes in the relative abundance of ecological clusters within the co-occurrence network of bacterial communities for the two regions. Using metagenomic data, we were also able to detect the effect of Hg pollution on multiple functional genes relevant to key soil processes such as element cycles and Hg transformations (e.g., methylation and reduction). Conclusions: Together, our study provides solid evidence that Hg pollution has predictable and significant effects on multiple taxonomic and functional attributes including bacterial abundance, diversity, and the relative abundance of ecological clusters and functional genes. Our results suggest an increase in soil Hg pollution linked to human activities will lead to predictable shifts in the taxonomic and functional attributes in the Hg-impacted areas, with potential implications for sustainable management of agricultural ecosystems and elsewhere

    Microbial resistance promotes plant production in a four-decade nutrient fertilization experiment

    Get PDF
    There is a current lack of mechanistic understanding on the relationships between a soil microbial community, crop production, and nutrient fertilization. Here, we combined ecological network theory with ecological resistance index to evaluate the responses of microbial community to additions of multiple inorganic and organic fertilizers, and their associations with wheat production in a 35-year field experiment. We found that microbial phylotypes were grouped into four major ecological clusters, which contained a certain proportions of fast-growers, copiotrophic groups, and potential plant pathogens. The application of combined inorganic fertilizers and cow manure led to the most resistant (less responsive) microbial community, which was associated with the highest levels of plant production, nutrient availability, and the lowest relative abundance of potential fungal plant pathogens after 35 years of nutrient fertilization. In contrast, microbial community was highly responsive (low resistance) to inorganic fertilization alone or plus wheat straw, which was associated with lower crop production, nutrient availability, and higher abundance of potential fungal plant pathogens. Our work demonstrates that the response of microbial community to long-term nutrient fertilizations largely regulates plant production in agricultural ecosystems, and suggests that manipulating these microbial phylotypes may offer a sustainable solution to the maintenance of field productivity under long-term nutrient fertilization scenarios. © 2019 The Author

    Evaluation of microbe-driven soil organic matter quantity and quality by thermodynamic theory

    Get PDF
    Microbial communities, coupled with substrate quality and availability, regulate the stock (formation versus mineralization) of soil organic matter (SOM) in terrestrial ecosystems. However, our understanding of how soil microbes interact with contrasting substrates influencing SOM quantity and quality is still very superfi-cial. Here, we used thermodynamic theory principles and Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) to evaluate the linkages between dissolved organic matter (DOM [organic substrates in soil that are readily available]), thermodynamic quality, and microbial communities. We investigated soils from subtropical paddy ecosystems across a 1,000-km gradient and comprising contrasting levels of SOM content and nutrient availability. Our region-scale study suggested that soils with a larger abundance of readily accessible resources (i.e., lower Gibbs free energy) supported higher levels of microbial diversity and higher SOM content. We further advocated a novel phylotype-level microbial classification based on their associations with OM quantities and qualities and identified two contrasting clusters of bacterial taxa: phylotypes that are highly positively correlated with thermodynami-cally favorable DOM and larger SOM content versus those which are associated with less-favorable DOM and lower SOM content. Both groups are expected to play criti-cal roles in regulating SOM contents in the soil. By identifying the associations between microbial phylotypes of different life strategies and OM qualities and quan-tities, our study indicates that thermodynamic theory can act as a proxy for the relationship between OM and soil microbial communities and should be considered in models of soil organic matter preservation. IMPORTANCE Microbial communities are known to be important drivers of organic matter (OM) accumulation in terrestrial ecosystems. However, despite the importance of these soil microbes and processes, the mechanisms behind these microbial-SOM associations remain poorly understood. Here, we used the principles of thermodynamic theory and novel Fourier transform ion cyclotron resonance mass spectrome-try techniques to investigate the links between microbial communities and dissolved OM (DOM) thermodynamic quality in soils across a 1,000-km gradient and comprising contrasting nutrient and C contents. Our region-scale study provided evidence that soils with a larger amount of readily accessible resources (i.e., lower Gibbs free energy) supported higher levels of microbial diversity and larger SOM con-tent. Moreover, we created a novel phylotype-level microbial classification based on the associations between microbial taxa and DOM quantities and qualities. We found two contrasting clusters of bacterial taxa based on their level of association with thermodynamically favorable DOM and SOM content. Our study advan-ces our knowledge on the important links between microbial communities and SOM. Moreover, by identifying the associations between microbial phylotypes of different life strategies and OM qualities and quantities, our study indicates that thermodynamic theory can act as a proxy for the relationship between OM and soil microbial communities. Together, our findings support that the association between microbial species taxa and substrate thermodynamic quality constituted an important complement explanation for soil organic matter preservation

    Suppressed N fixation and diazotrophs after four decades of fertilization

    Get PDF
    Background: N fixation is one of the most important microbially driven ecosystem processes on Earth, allowing N to enter the soil from the atmosphere, and regulating plant productivity. A question that remains to be answered is whether such a fundamental process would still be that important in an over-fertilized world, as the long-term effects of fertilization on N fixation and associated diazotrophic communities remain to be tested. Here, we used a 35-year fertilization experiment, and investigated the changes in N fixation rates and the diazotrophic community in response to long-term inorganic and organic fertilization. Results: It was found that N fixation was drastically reduced (dropped by 50%) after almost four decades of fertilization. Our results further indicated that functionality losses were associated with reductions in the relative abundance of keystone and phylogenetically clustered N fixers such as Geobacter spp. Conclusions: Our work suggests that long-term fertilization might have selected against N fixation and specific groups of N fixers. Our study provides solid evidence that N fixation and certain groups of diazotrophic taxa will be largely suppressed in a more and more fertilized world, with implications for soil biodiversity and ecosystem functions

    Climate legacies drive global soil carbon stocks in terrestrial ecosystems

    Get PDF
    Climatic conditions shift gradually over millennia, altering the rates at which carbon (C) is fixed from the atmosphere and stored in the soil. However, legacy impacts of past climates on current soil C stocks are poorly understood. Weused data from more than 5000 terrestrial sites from three global and regional data sets to identify the relative importance of current and past (Last Glacial Maximum andmid-Holocene) climatic conditions in regulating soil C stocks in natural and agricultural areas. Paleoclimate always explained a greater amount of the variance in soil C stocks than current climate at regional and global scales. Our results indicate that climatic legacies help determine global soil C stocks in terrestrial ecosystems where agriculture is highly dependent on current climatic conditions. Our findings emphasize the importance of considering how climate legacies influence soil C content, allowing us to improve quantitative predictions of global C stocks under different climatic scenarios

    Diversifying livestock promotes multidiversity and multifunctionality in managed grasslands

    Get PDF
    Increasing plant diversity can increase ecosystem functioning, stability, and services in both natural and managed grasslands, but the effects of herbivore diversity, and especially of livestock diversity, remain underexplored. Given that managed grazing is the most extensive land use worldwide, and that land managers can readily change livestock diversity, we experimentally tested how livestock diversification (sheep, cattle, or both) influenced multidiversity (the diversity of plants, insects, soil microbes, and nematodes) and ecosystem multifunctionality (including plant biomass production, plant leaf N and P, above-ground insect abundance, nutrient cycling, soil C stocks, water regulation, and plant-microbe symbiosis) in the world's largest remaining grassland. We also considered the potential dependence of ecosystem multifunctionality on multidiversity. We found that livestock diversification substantially increased ecosystem multifunctionality by increasing multidiversity. The link between multidiversity and ecosystem multifunctionality was always stronger than the link between single diversity components and functions. Our work provides insights into the importance of multitrophic diversity to maintain multifunctionality in managed ecosystems and suggests that diversifying livestock could promote both multidiversity and ecosystem multifunctionality in an increasingly managed world

    D'Annunzio sulla scena lirica: libretto o "Poema"?

    Get PDF
    Australia Direct Action climate change policy relies on purchasing greenhouse gas abatement from projects undertaking approved abatement activities. Management of soil organic carbon (SOC) in agricultural soils is an approved activity, based on the expectation that land use change can deliver significant changes in SOC. However, there are concerns that climate, topography and soil texture will limit changes in SOC stocks. This work analyses data from 1482 sites surveyed across the major agricultural regions of Eastern Australia to determine the relative importance of land use vs. other drivers of SOC. Variation in land use explained only 1.4% of the total variation in SOC, with aridity and soil texture the main regulators of SOC stock under different land uses. Results suggest the greatest potential for increasing SOC stocks in Eastern Australian agricultural regions lies in converting from cropping to pasture on heavy textured soils in the humid regions
    • …
    corecore