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Climate legacies drive global soil carbon stocks in
terrestrial ecosystems
Manuel Delgado-Baquerizo,1,2* David J. Eldridge,3 Fernando T. Maestre,4 Senani B. Karunaratne,1

Pankaj Trivedi,1,5 Peter B. Reich,1,6 Brajesh K. Singh1,7

Climatic conditions shift gradually over millennia, altering the rates at which carbon (C) is fixed from the atmosphere
and stored in the soil. However, legacy impacts of past climateson current soil C stocks are poorly understood.Weused
data frommore than 5000 terrestrial sites from three global and regional data sets to identify the relative importance
of current and past (Last Glacial Maximum andmid-Holocene) climatic conditions in regulating soil C stocks in natural
and agricultural areas. Paleoclimate always explained a greater amount of the variance in soil C stocks than current
climate at regional and global scales. Our results indicate that climatic legacies help determine global soil C stocks in
terrestrial ecosystems where agriculture is highly dependent on current climatic conditions. Our findings emphasize
the importance of considering how climate legacies influence soil C content, allowing us to improve quantitative pre-
dictions of global C stocks under different climatic scenarios.
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INTRODUCTION
Soils store three times more carbon (C) than either the atmosphere or
terrestrial vegetation (1). Moreover, soil C storage is one of the most
important ecosystemprocesses for humans because it plays critical roles
in supporting key ecosystem services such as climate regulation, soil fer-
tility, and fiber and food production (2, 3). Short-term climate legacies
(that is, days to decades) have been reported to strongly influence key
ecosystemprocesses such as plant productivity and litter decomposition
in terrestrial systems (4–6). However, much less is known about the ex-
tent to which long-term climate legacies (that is, centuries to millennia)
control such processes. Projections into the future are conditional upon
the past, but key ecosystem and biogeochemical variables, such as soil C,
strongly reflect site history across centennial to millennial time scales
(1). Thus, quantifying the influence of long-term climate legacies on soil
C stocks can be of paramount importance to better understand soil C
cycle–climate change feedbacks and to improve ecosystem and earth
system simulation models, which are primary tools for predicting cli-
mate change impacts on soil C at the global scale (7). Although a the-
oretical framework based on ecological principles is emerging to explain
long- versus short-term legacy impacts on ecosystem functions, such as
plant productivity (5), we still lack empirical evidence to support this
framework.

One of themost significant developments in the field of soil sciences
in recent years involves the increased recognition that most soils are
polygenetic, that is, archival products of pedogenic processes that vary
widely over time (8). For example, we know from chronosequences that
C accumulates in the soil over thousands of years during pedogenesis (at
least as long as 10,000 years) (8–12), wherein the persistence of soil C is
driven largely by abiotic and biotic factors (9, 12). However, the climate
of a particular area changes over decades and centuries, resulting in
large-scale biome migrations (5). Variations in vegetation type and
plant productivity, both of which are linked to shifting climate and bi-
ome migrations, regulate the rates at which C is fixed from the atmo-
sphere via photosynthesis and stored in the soil (13, 14). The long-term
climate history of a region, rather than the current climatic conditions,
could, in theory, be a better proxy of the amount ofC that has been stored
in a particular terrestrial ecosystem over many centuries. For example, a
grassland under a current dry climate, whichwas previously a forest eco-
system under a wetter paleoclimate, may now have a greater amount of
soil C than expected based on its current climate (Fig. 1) (15, 16). Despite
the importance of soil C for humanwell-being, we lack empirical evidence
on the relative importance of past climates in relation to current climatic
conditions as drivers of global soil C stocks in terrestrial ecosystems.

Shifts in landuse fromnatural systems to agriculture have been shown
tomarkedly reduce the amount of soil C as a result of rapidCdegradation
and soil erosion linked to land clearing and cultivation (Fig. 1) (12, 17, 18).
Thus, human-induced disturbances will have a greater impact on soil C
stocks than those imposed only through climate legacies in natural
systems, enhancing the importance of current climate in driving soil
C stocks (Fig. 1). The global pressure on soils is expected to increase
exponentially during this century due to the agricultural intensification
needed to meet the increasing food demand to sustain a growing global
population (19). Improving our understanding of the role of human
disturbance in shifting the relative contribution of paleo- versus current
climatic conditions in regulating soil C storage is critical to improve our
ability to accurately predict soil C storage in terrestrial ecosystems.

We tested the following hypotheses: (i) long-term climate legacies
influence contemporary global soil C stocks in terrestrial ecosystems,
and (ii) human disturbance alters the relative contribution of long-term
(that is, paleoclimate) compared with current climate as drivers of these
stocks. To do this, we gathered data from three independent large-scale
surveys: the International Soil Reference and Information Centre’s
(ISRIC’s) World Soil Information Service (“Global-WoSIS” hereafter;
Materials and Methods) (20) including 4381 sites, data from a global
field survey including 224 dryland sites from all continents except Ant-
arctica (“Global-Drylands”hereafter) (21), and data froma regional sur-
vey including 450 sites scattered across a 400-km2 area of eastern
Australia (“Australia” hereafter; see Materials and Methods) (fig. S1).
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These data sets included information on soil carbon stocks (kg C m−2;
Global-WoSIS and Australia) or concentrations (%; Global-Drylands)
from the uppermost soil layer (top ~10 cm). These data sets include
global and regional scale data comprising a wide range of paleo- and
current climatic conditions. This characteristic allows sufficient climatic
variation to test the relative importance of paleo- versus current climate
in predicting soil C stocks. We obtained information on 19 bioclimatic
variables (Table 1) from current and paleoclimates [climates experienced
in mid-Holocene (about 6000 years ago) and Last Glacial Maximum
(about 22,000 years ago)] using global climate models (see Materials
and Methods) (22, 23). The reason for including more than one paleo-
climate in our analyses is that changes in soil carbon stocks occur grad-
ually with time as a consequence of changing conditions (8) rather than
because of the climate of a certain time period.
17
RESULTS AND DISCUSSION
We first used variation partitioning modeling (24) to quantify the rela-
tive contribution of current versusmid-Holocene and Last GlacialMax-
imum climates in controlling contemporary soil C stocks (top ~10 cm;
Materials andMethods). Variation partitioning is a method specifically
recommended to deal with multicollinearity because it partitions the
variance in a given response variable that is attributed to a particular
group of predictors from that variance shared among all predictors
(24). Our models explained 30.1, 79.2, and 30.3% of the variance in soil
C for the Global-WoSIS, Global-Drylands, and Australia data sets, re-
spectively (Fig. 2). They indicate that paleoclimate (mid-Holocene and
Last Glacial Maximum combined) explained a greater unique amount
of the variance in soil C stocks than current climate in terrestrial eco-
systems at regional and global scales (5.9 versus 4.3%, 26.9 versus 7.3%,
and 7.0 versus 0.5% of the variance of soil carbon in the Global-WoSIS,
Global-Drylands, and Australia data sets, respectively; Fig. 2). Bio-
climatic variables from the different climatic periods evaluated were
Fig. 1. A theoretical framework explaining the effects of climatic legacies on soil C stocks in natural and agricultural areas. Higher color intensity in soil represents more
soil carbon. In the example, a grasslandunder a current dry climate,whichwaspreviously a forest ecosystem (siteA) anddevelopedunder awetter paleoclimatenow, has agreater
amount of soil C than expected based on its current climate or compared to a contemporary arid grassland subjected to arid paleoclimate (site B). Shifts in land use from natural
systems to agriculture have been shown to markedly reduce the amount of soil C as a result of rapid C degradation and soil erosion linked to land clearing and cultivation.
Delgado-Baquerizo et al., Sci. Adv. 2017;3 : e1602008 12 April 2017
Table 1. Bioclimatic variables included in this study.
Bioclimatic variable
 Acronym
Annual mean temperature
 AMT
Mean diurnal range
 MDR
Isothermality
 ISO
Temperature seasonality
 TSEA
Maximum temperature of warmest month
 MAXTWM
Minimum temperature of coldest month
 MINTCM
Temperature annual range
 TRANGE
Mean temperature of wettest quarter
 TWETQ
Mean temperature of driest quarter
 TDQ
Mean temperature of warmest quarter
 TWARQ
Mean temperature of coldest quarter
 TCQ
Annual precipitation
 AP
Precipitation of wettest month
 PWETM
Precipitation of driest month
 PDM
Precipitation seasonality
 PSEA
Precipitation of wettest quarter
 PWETQ
Precipitation of driest quarter
 PDQ
Precipitation of warmest quarter
 PWARQ
Precipitation of coldest quarter
 PCQ
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highly correlated (table S1), which explains the high percentage of shared
variance in predicting soil C stocks among climate periods observed (Fig.
2, A to C). Shared variation explaining C stock among different predic-
tors (for example, current climate and mid-Holocene) cannot be
attributed particularly to any of those climatic periods. Because of this,
we only compared the unique portion of the variation in soil C stocks
explained in a singularmanner by either paleoclimate or current climate.
Similar results were found after controlling for spatial influence in all
cases (fig. S2) and also across bioclimatic regions (that is, tropical, tem-
perate, continental, and arid) within the Global-WoSIS data set (fig. S3).
Most importantly, these results were also maintained after explicitly
accounting for other important predictors of soil C stocks such as space
(latitude, longitude, and altitude), soil properties (soil pH, electrical con-
ductivity, and sand content), and biotic factors (species richness and
plant cover) simultaneously in theGlobal-Drylands data set, where these
data were available (fig. S4). Only the Global-WoSIS data set contained
soil C stock information for soil below 10-cmdepth (www.isric.org/data/
wosis) (25). Using this data set, we found a highly significant positive
correlation between soil C stocks from the top 10 cm and those from
all other soil depths (10 to 20, 20 to 50, 50 to 100, 0 to 20, 0 to 50,
and 0 to 100 cm) (table S2). Our variation partitioning modeling
provided evidence that paleoclimate still predicted a unique portion of
the variance that cannot be predicted by current climate at 10 to 20, 20 to
50, 50 to 100, 0 to 20, 0 to 50, and 0 to 100 cm (figs. S5 and S6). Our
findings suggest that paleoclimatic information could also be used to im-
prove predictions of soil C stocks in the deep layers of soil (from 50 to
100 cm), where current model performance to predict soil organic C
content is still largely limited (26).
Delgado-Baquerizo et al., Sci. Adv. 2017;3 : e1602008 12 April 2017
Within the Global-WoSIS data set, the footprint of paleoclimate leg-
acies on soil C stocks was particularly noticeable in the midlatitudes
comparedwith the tropics (fig. S7).Here, the interaction between paleo-
and current climate was a stronger driver of soil C stocks than the cli-
mate of a particular period per se (fig. S7). These differences in the role
of paleoclimate in driving soil C stocks observed between midlatitude
and tropical areas may be related to the extent of the last glaciation in
these regions. Middle latitudes were highly affected by the last glacia-
tions, and their climatic conditions have substantially changed over
the last 20,000 years (12). These climatic changes likely influenced the
rate of soil C fixation in these regions, and our results suggest that they
have left an imprint in soil C stocks that can still be identified nowadays.
Conversely, climatic conditions have been more stable in the tropics
(versus middle latitudes) during the last millennia due to the lack of
effects from last glaciations (12). Therefore, the paleoclimatic footprint
is difficult to observe in these areas. Together, our findings accord with
recent studies highlighting the importance of past climate as a driver of
ecosystem attributes, such as litter decomposition and biodiversity in
terrestrial ecosystems (6, 27, 28), and provide, to the best of our knowl-
edge, the first empirical demonstration that climatic legacies continue to
drive the magnitude of contemporary soil C stocks at regional and
global scales in terrestrial ecosystems.

We used random forest modeling (29) to identify themain past and/or
current climatic drivers of soil C stocks and structural equationmodeling
(SEM) (30) to clarify their relative influence. These techniques are special-
ly recommended to identify the main predictors of environmental re-
sponse variables (see Materials and Methods). Our random forest
models explained 50.8, 72.5, and 30.2% of the variance in soil carbon
Fig. 2. Relative contribution of paleo- (mid-Holocene and Last Glacial Maximum) and current climate as drivers of soil carbon stocks. Results from variation partitioning
modeling aiming to identity the percentage of variance of soil carbon explained by past and current climate variables for the Global-WoSIS (A), Global-Drylands (B), and Australia
(C) data sets are shown. Shared effects of these variable groups are indicated by the overlap of circles. (D to F) Results from random forest analyses aiming to identify the top five
significant (P < 0.05) bioclimatic variables regulating soil carbon for the three data sets used. Increase in the percentage of MSE is equal to the increase in the mean square error.
Acronyms are available in Table 1.
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for theGlobal-WoSIS, Global-Drylands, andAustralia data sets, respec-
tively (Fig. 2, D to F). Precipitation from paleoclimates and maximum
temperature in the warmest month from current and mid-Holocene
climates were the main drivers of soil C stocks at the global scale (Fig. 2,
D and E; see table S3 for a complete list of the soil C stock drivers eval-
uated). Structural equation models suggested that, in general, paleo-
climate is more important than current climate in driving soil C stocks
at the global scale (fig. S8, A andB). Precipitation variableswere positively
related to soil C content in the two global data sets studied (table S4).
Precipitation is a key driver of plant growth and litter decomposition
in terrestrial ecosystems and ultimately regulates the rates at which C is
fixed from the atmosphere and stored in the soil (31, 32). As C accumu-
lates in the soil overmillennia innatural systems (8–10), the current soil C
content reflects the climatic conditions experiencedover this period.Con-
versely, temperature in the warmest month was negatively related to soil
C content in both global data sets (table S4). Rising temperatures under
climate change are predicted to promote soil C losses via soil respiration
(12). Our study provides evidence that millennial precipitation and tem-
perature legacies still influence soil C stocks today. Temperature in the
driest quarter from the Last Glacial Maximum (positively related to soil
C stocks) was themain driver of variations in soil C stocks at the regional
scale in Australia (tables S4 and S5, Fig. 2F, and fig. S8C). Our random
forest and SEM results suggest that paleoclimatic legacies linked to tem-
perature regulated soil C stocks observed in easternAustralia, evenwithin
the limited precipitation range (280 to 648 mm) found in this data set
Delgado-Baquerizo et al., Sci. Adv. 2017;3 : e1602008 12 April 2017
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(Fig. 2F and fig. S8C). Together, our findings highlight the importance
of considering climate legacies on soil C stocks to improve ecosystem
and earth system and global change simulation models. Implications of
our results canbe considered to beminimal for global drylands because of
their relatively low capacity to store C (33). However, drylands occupy
~45% of Earth’s land mass (34) and regulate the global C budget. Global
drylands comprise 27% (431GTof organicC) of the global soil organicC
reserves (35). Thus, our findings further emphasize the need to consider
climatic legacies when estimating soil C stocks in global drylands. This is
critical for achieving global sustainability because drylands support 38%
of global human populations that rely heavily on ecosystem services
linked to soil C stocks, such as forage and food production (36).

To test our second hypothesis (that is, soil disturbance from agricul-
ture alters the relative contribution of paleo- compared with current cli-
mate in controlling soil C stocks), we analyzed a subset of data from the
Global-WoSIS where we were able to partition sites between natural
and agricultural systems (see Materials and Methods). We restricted
our analyses to the Global-WoSIS data set because all samples from
the Global-Drylands and Australia data sets belong to natural or semi-
natural ecosystems. Current climate showed a larger relative contribu-
tion to the prediction of soil C stocks for agricultural (8.0%) than natural
(1.5%) systems (Fig. 3). Strikingly, in both cases, paleoclimate (mid-
Holocene and Last GlacialMaximum) was still the best predictor of soil
C stocks in agricultural (9.9%) and natural (7.9%) areas. Similar results
were found after accounting for spatial influence in ourmodels (fig. S9).
However, paleoclimate explained five timesmore variance in soil C than
current climate in natural compared to agricultural systems (Fig. 3 and
figs. S5 and S6). These results support the hypothesis that the predictive
power of current climate on soil C stocks increases with disturbances
associated with agricultural practices. Reductions in soil C linked to ag-
ricultural intensification reported here (Fig. 4) and elsewhere (12) may
promote the dependency of C stocks on current climatic conditions
from a particular area after human disturbances. Although past precip-
itation and temperature regimes continue to be the main drivers of soil
C at a global scale for natural systems (fig. S8E), current temperature
(fig. S8D) and past precipitation regimes are major drivers of soil C
stocks in agricultural systems (fig. S8D). These results further suggest
that the greater contribution of current climate in agricultural than in
natural systemsmay be drivenmore by temperature than precipitation.
This is not fully unexpected because irrigation has removed the depen-
dency of many agricultural regions on natural precipitation (37).
Fig. 3. Relative contribution of paleo- (mid-Holocene and Last GlacialMaximum)
and current climate as drivers of soil carbon in agricultural (n = 1167) and natural
(n = 814) systems from the Global-WoSIS data set. (A and B) Variation partitioning
modeling aiming to identity the percentage of variance of soil carbon explained by
past and current climate variables for the identified agricultural and natural systems
from the Global-WoSIS. Shared effects of these variable groups are indicated by the
overlap of circles. (C andD) Results from the random forest analyses aiming to identify
the top five bioclimatic variables regulating soil carbon for the three data sets used.
Increase in the percentage of MSE is equal to the increase in the mean square error.
Acronyms are available in Table 1.
Fig. 4. Soil carbon stocks for agricultural (n = 814) and natural (n = 1167) eco-
systems from the Global-WoSIS data set. Analyses of variance (ANOVAs) were used
to test for differences between natural and agricultural systems.
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CONCLUSIONS
Together, our findings suggest that paleoclimatic legacies should be
considered in predictions of global soil C stocks in agricultural and
natural terrestrial systems. Including paleoclimatic conditions in con-
temporary climate models will help us improve our capacity to predict
soil C stocks under changing environments over the next century. This
knowledge will protect us against unreasonable expectations about the
likely magnitudes of increase in C stocks with short-term management
practices such as minimum tillage or low-intensity grazing. Ultimately,
we will be in a better position to predict how past climates are shaping
our current lives and how they affect the ability of terrestrial ecosystems
to provide a range of essential services, including nutrient cycling, soil
carbon storage, and fiber and foodproduction.Our findings further em-
phasize the importance of considering climate legacies when assessing
soil C stocks to improve ecosystem and earth system simulationmodels,
which are primary tools for predicting climate change impacts on the
global C cycle.
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MATERIALS AND METHODS
Study sites and data collection
Global-WoSIS
We used available online data from the ISRIC’s WoSIS (www.isric.org/
data/wosis) (20). Here, we used 4381 sites from the Global-WoSIS, in-
cluding original information on soil carbon content and bulk density
across different soil horizons, which allowed us to calculate soil C stocks.
We extracted 0 to 10 cm of soil C stock data (kg C m−2) after fitting an
equal area quadratic spline (38). We adopted a l value of 0.01 in fitting
equal area quadratic splines for each considered soil pedon, and splines
were fitted using version 2 of “Spline Tool for estimating soil attributes
at standard depths” developed by CSIRO (Australian Soil Resource
Information System 2011, Canberra, Australia) (www.asris.csiro.au/
methods.html). Similarly, we obtained information on soil C stocks at
10 to 20, 20 to 50, and 50 to 100 cm for this data set. Data on 0 to 20, 0 to
50, and 0 to 100 cm were then calculated as the sum of C stocks for the
previous estimations.

We also conducted analyses by splitting our data set into agricultural
and natural ecosystems. To do so, we used four independent global land
cover maps to identify themost likely land uses in each of the sites from
the Global-WoSIS data set: global land cover map (GLC-2000) (39),
GLC-SHARE (Global Land Cover Network; www.glcn.org/databases/
lc_glcshare_en.jsp), Globcover2009 from the European Space Agency
(http://due.esrin.esa.int/page_globcover.php), and global land cover
maps obtained from the moderate resolution imaging spectroradiometer
aboard NASA’s Terra satellites (http://neo.sci.gsfc.nasa.gov/view.php?
datasetId=MCD12C1_T1). Only sites that were identified as agricultur-
al or natural systems by all these globalmaps simultaneously (45.21% of
the sites) were used for analyses, comparing agricultural to natural eco-
systems. Soil C stocks were log-transformed to improve normality.
Global-Drylands
We used available online data from the EPES-BIOCOM global dryland
survey (21) (www.nature.com/nature/journal/v502/n7473/source_data/
nature12670-f2.xls), which focuses on dryland ecosystems, defined
as regions with an aridity index (precipitation/potential evapo-
transpiration) between 0.05 and 0.65 (40). This data set includes a wide
variety of habitat types (grasslands, shrublands, and open woodlands)
and environmental conditions (21). Field data were collected between
2006 and 2010 from224 sites located in 16 countries from all continents
except Antarctica (fig. S1B) according to a standardized sampling
Delgado-Baquerizo et al., Sci. Adv. 2017;3 : e1602008 12 April 2017
protocol (21). At each site, a 30-m × 30-m plot was established under
the most representative vegetation. A composite sample (that is, from
five soil samples; 0 to 7.5 cm in depth) was randomly taken under the
canopy of the dominant perennial plant species and in open areas
devoid of perennial vegetation. After field collection, soil samples were
taken to the laboratory, sieved (<2mm), and air-dried for 1month. Soil
C (percentage) was determined using the Walkley-Black chromic acid
wet oxidationmethod (41). Bulk density informationwas not available
for the Global-Drylands data set. However, in a subset of our data set
where bulk density was available, soil C stocks (kg Cm−2) were highly
correlatedwith soil C concentration (percentage; r = 0.930,P< 0.001, n=
42), providing further robustness to our approach. In the Global-Drylands
data set, samples were collected in open areas and under the domi-
nant vegetation patches; thus, all the soil variables in this data set
were averaged to obtain site-level estimates by using the mean values
observed in bare ground and vegetated areas, weighted by their re-
spective cover at each site (21). Soil C was log10-transformed to im-
prove normality.
Australia (regional scale)
This data set includes 450 sites scattered across a 400-km2 area of east-
ern Australia (fig. S1C). Vegetation along this transect is dominated by
dense woodlands to forests of blackbox (Eucalyptus largiflorens), white
cypress pine (Callitris glaucophylla), and river red gum (Eucalyptus
camaldulensis). This data set includes sites extensively used for livestock
grazing, large areas dedicated for conservation (national parks and na-
ture reserves), and smaller areas devoted to native forestry. Field data
were collected in 2014. Each site comprised a 200-m-long transect
running perpendicular to the nearest livestock watering point. Along
this transect, we positioned five 0.25-m2 (0.5 m × 0.5 m) plots every
50 m. Soils (0 to 5 cm in depth) were collected from the center of each
quadrat, air-dried, ground, and passed through a 2-mm sieve to remove
any roots or organic debris. Total soil C was determined using high-
intensity combustion (LECO CNS-2000, LECO Corporation). Bulk
density was determined with a 7-cm-diameter core to 5-cm depth,
and the mass was determined after drying for 24 hours at 104°C. Soil
C stocks (kg Cm−2) (0 to 5 cm) were calculated from original total soil C
and bulk density data. Soil C stocks were log10-transformed to improve
normality.

Climate data
A total of 19 standardized climatic variables (Table 1) were obtained
from all the sites surveyed from WorldClim (www.worldclim.org)
(22, 23). Average changes in mean annual temperature and precipita-
tion from Last GlacialMaximum to current climate ranged from 955 to
1033 mm at 11.5° to 17.7°C, 426 to 421 mm at 11.0° to 15.5°C, and 407
to 428 mm at 12.9° to 16.6°C for the Global-WoSIS, Global-Drylands,
and Australia data sets, respectively. In the case of mid-Holocene and
Last Glacial Maximum climates, we used estimates provided by the
Community Climate System Model (CCSM4; www.cesm.ucar.edu/
models/ccsm4.0/) (42–44). We used data at a 2.5-min resolution
(~4.5 km at equator) because this is the highest resolution available
for the Last GlacialMaximumperiod. Bioclimatic data are also available
for this resolution for current and mid-Holocene climates, allowing for
the direct comparison among bioclimatic data at different periods. Cli-
matic data are also available at the 30-s resolution for the current and
mid-Holocene climates, which allowed us to compare the 2.5-min and
30-s resolution data for these two periods. Values calculated using a
resolution of 2.5 min were identical to those calculated using a resolu-
tion of 30 s in all cases (Pearson’s r > 0.99; P < 0.001).
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Statistical modeling
Variation partitioning modeling
Themain goal of this analysis was to quantify the relative importance of
bioclimatic variables at different periods (Table 1) as predictors of soil C
stocks. In particular, this analysis provides insights into whether cli-
matic variables from current, mid-Holocene, and Last Glacial Maxi-
mum periods can explain a unique portion of the variance that is not
explained by climate in other periods (24, 45). Analyses were done using
C stocks (kg Cm−2) for theGlobal-WoSIS andAustralia data sets andC
concentration (percentage) for the Global-Drylands data set; bulk den-
sity information was not available. Analyses in this section were re-
peated using the residuals from a multilinear regression between
spatial variables (latitude and longitude) and soil C stocks as a response
variable (that is, residuals of soil C stocks). Themain goal of these analy-
ses was to reduce the noise derived from spatial variables on soil C
stocks because the residuals from these multilinear regressions are
not influenced by either latitude or longitude. In all cases, variation
partitioning analyses were conducted with the R package “vegan”
(46). Because similar results were found across different soil depths
for the Global-WoSIS data set (where this information was available)
and for consistency with the other data sets included in this study, we
conducted the rest of the statistical analyses using the top ~10-cm
information.
Random forest modeling
Weconducted a classification random forest analysis (29) to identify the
main bioclimatic predictors of soil C stocks. Contrary to the variation
partitioning model described above, random forest analysis allowed us
to identify the most important drivers of soil C among 19 bioclimatic
variables from the different climatic periods studied (Table 1). This
technique is a novel machine-learning algorithm that extends standard
classification and regression tree (CART) methods by creating a collec-
tion of classification trees with binary divisions. Unlike traditional
CART analyses, the fit of each tree is assessed using randomly selected
cases (one of three of the data), which are withheld during its construc-
tion [out-of-bag (OOB) cases]. The importance of each predictor vari-
able is determined by evaluating the decrease in prediction accuracy
(that is, increase in the mean square error between observations and
OOB predictions) when the data for that predictor is randomly per-
muted. This decrease is averaged over all trees to produce the final mea-
sure of importance. This accuracy importance measure was computed
for each tree and averaged over the forest (9999 trees). Unlikemultimo-
del inference using linear regressions or regression tree analyses, ran-
dom forest analysis alleviate multicollinearity problems in multivariate
analyses by building bagged tree ensembles and including a random sub-
set of features for each tree (9999 trees). These analyses were conducted
using the randomForest package (47) of the R statistical software, version
3.0.2 (http://cran.r-project.org/).
Structural equation modeling
Using random forest analysis, we identified the top five predictors of soil
C for each of the data sets and periods studied.We used SEM to further
clarify, using an independent analysis, the relative importance of these
soil C predictors. A useful characteristic of SEM for our purposes lies on
its utility for partitioning the effects that a variable may have on another
and for estimating the strengths of these multiple effects. Unlike regres-
sion orANOVA, SEMoffers the ability to separatemultiple pathways of
influence and view them as parts of a system and thus is useful for
investigating the complex relationships among predictors commonly
found in natural ecosystems (30). Thus, we included in our SEMs the
best climatic predictor, selected by random forest analyses, at the three
Delgado-Baquerizo et al., Sci. Adv. 2017;3 : e1602008 12 April 2017
studied periods and soil C as our response variable.We allowed climatic
predictors to covariate in these models. All the SEM analyses were con-
ducted using AMOS 20.0.
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fig. S2. Relative contribution of paleo- (mid-Holocene and Last Glacial Maximum) and current
climate of the residuals of soil C stocks (from a multilinear regression with latitude and
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space (latitude, longitude, and altitude), soil properties (soil pH, electrical conductivity, and
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stocks in the Global-Drylands data set.
fig. S5. Relative contribution of paleo- versus current climate in driving soil C across different
soil depths: 10 to 20 cm (all sites, n = 4234; agricultural sites, n = 1134; and natural sites,
n = 790), 20 to 50 cm (all sites, n = 3797; agricultural sites, n = 1046; and natural sites, n = 670),
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Global-WoSIS.
fig. S6. Relative contribution of paleo- versus current climate in driving soil C across different soil
depths: 0 to 20 cm (all sites, n = 4234; agricultural sites, n = 1134; and natural sites, n = 790),
0 to 50 cm (all sites, n = 3786; agricultural sites, n = 1046; and natural sites, n = 674), and 0 to
100 cm (all sites, n = 2349; agricultural sites, n = 604; and natural sites, n = 435) for all sites
available and also for the identified agricultural and natural systems from the Global-WoSIS.
fig. S7. Relative contribution of paleo- versus current climate in driving soil C stocks in middle
latitudes (n = 2080) and tropics (n = 2301) for the Global-WoSIS data set.
fig. S8. Structural equation modeling aiming to identify the relative influence of the main
bioclimatic variables from current, mid-Holocene, and land maximum climate (as identified by
random forest analyses) on soil C stocks.
fig. S9. Relative contribution of paleo (mid-Holocene and Last Glacial Maximum) and current
climate as drivers of the residuals of soil C stocks (from a multilinear regression with latitude
and longitude as predictors of soil C stocks) in agricultural (n = 1167) and natural (n = 814)
systems from the Global-WoSIS data set.
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