22,683 research outputs found
Dirac Triplet Extension of the MSSM
In this paper we explore extensions of the Minimal Supersymmetric Standard
Model involving two triplet chiral superfields that share a
superpotential Dirac mass yet only one of which couples to the Higgs fields.
This choice is motivated by recent work using two singlet superfields with the
same superpotential requirements. We find that, as in the singlet case, the
Higgs mass in the triplet extension can easily be raised to
without introducing large fine-tuning. For triplets that carry hypercharge, the
regions of least fine tuning are characterized by small contributions to the
parameter, and light stop squarks, ; the latter is a result of the dependence of
the triplet contribution to the Higgs mass. Despite such light stop masses,
these models are viable provided the stop-electroweakino spectrum is
sufficiently compressed.Comment: 26 pages, 4 figure
Indirect Effect of Supersymmetric Triplets in Stop Decays
We study an extension of the minimal supersymmetric standard model with a
zero hypercharge triplet, and the effect that such a particle has on stop
decays. This model has the capability of predicting a 125.5 GeV Higgs even in
the presence of light stops and it can modify the diphoton rate by means of the
extra charged fermion triplet coupled to the Higgs. Working in the limit where
the scalar triplet decouples, and with small values of mA, we find that the
fermion triplet can greatly affect the branching ratios of the stops, even in
the absence of a direct stop-triplet coupling. We compare the triplet extension
with the MSSM and discuss how the additional fields affect the search for stop
pair production.Comment: pdfLateX, 16 pages, 7 figures, 2 tables, Typos, minor changes.
Version published in JHE
Critical Lines and Massive Phases in Quantum Spin Ladders with Dimerization
We determine the existence of critical lines in dimerized quantum spin
ladders in their phase diagram of coupling constants using the finite-size DMRG
algorithm. We consider both staggered and columnar dimerization patterns, and
antiferromagnetic and ferromagnetic inter-leg couplings. The existence of
critical phases depends on the precise combination of these patterns. The
nature of the massive phases separating the critical lines are characterized
with generalized string order parameters that determine their valence bond
solid (VBS) content.Comment: 9 pages 10 figure
DGSAT: Dwarf Galaxy Survey with Amateur Telescopes II. A catalogue of isolated nearby edge-on disk galaxies and the discovery of new low surface brightness systems
The connection between the bulge mass or bulge luminosity in disk galaxies
and the number, spatial and phase space distribution of associated dwarf
galaxies is a discriminator between cosmological simulations related to galaxy
formation in cold dark matter and generalized gravity models. Here, a nearby
sample of isolated Milky Way class edge-on galaxies is introduced, to
facilitate observational campaigns to detect the associated families of dwarf
galaxies at low surface brightness. Three galaxy pairs with at least one of the
targets being edge-on are also introduced. About 60% of the catalogued isolated
galaxies contain bulges of different size, while the remaining objects appear
to be bulge-less. Deep images of NGC 3669 (small bulge, with NGC 3625 at the
edge of the image) and NGC 7814 (prominent bulge), obtained with a 0.4-m
aperture, are also presented, resulting in the discovery of two new dwarf
galaxy candidates, NGC3669-DGSAT-3 and NGC7814-DGSAT-7. Eleven additional low
surface brightness galaxies are identified, previously notified with low
quality measurement flags in the Sloan Digital Sky Survey (SDSS). Integrated
magnitudes, surface brightnesses, effective radii, Sersic indices, axis ratios,
and projected distances to their putative major hosts are displayed. At least
one of the galaxies, NGC3625-DGSAT-4, belongs with a surface brightness of
approximately 26 mag per arcsec^2 and effective radius >1.5 kpc to the class of
ultra-diffuse galaxies (UDGs). NGC3669-DGSAT-3, the galaxy with lowest surface
brightness in our sample, may also be an UDG.Comment: 12 pages including 6 figures, 4 tables, a brief appendix, accepted
for publication in Astronomy & Astrophysics (A&A). Paper slightly modified
after A&A language editing, updating very few references and correcting a
small typo at the start of the Appendi
Inertial Coupling Method for particles in an incompressible fluctuating fluid
We develop an inertial coupling method for modeling the dynamics of
point-like 'blob' particles immersed in an incompressible fluid, generalizing
previous work for compressible fluids. The coupling consistently includes
excess (positive or negative) inertia of the particles relative to the
displaced fluid, and accounts for thermal fluctuations in the fluid momentum
equation. The coupling between the fluid and the blob is based on a no-slip
constraint equating the particle velocity with the local average of the fluid
velocity, and conserves momentum and energy. We demonstrate that the
formulation obeys a fluctuation-dissipation balance, owing to the
non-dissipative nature of the no-slip coupling. We develop a spatio-temporal
discretization that preserves, as best as possible, these properties of the
continuum formulation. In the spatial discretization, the local averaging and
spreading operations are accomplished using compact kernels commonly used in
immersed boundary methods. We find that the special properties of these kernels
make the discrete blob a particle with surprisingly physically-consistent
volume, mass, and hydrodynamic properties. We develop a second-order
semi-implicit temporal integrator that maintains discrete
fluctuation-dissipation balance, and is not limited in stability by viscosity.
Furthermore, the temporal scheme requires only constant-coefficient Poisson and
Helmholtz linear solvers, enabling a very efficient and simple FFT-based
implementation on GPUs. We numerically investigate the performance of the
method on several standard test problems...Comment: Contains a number of corrections and an additional Figure 7 (and
associated discussion) relative to published versio
Comprehensive theory of the relative phase in atom-field interactions
We explore the role played by the quantum relative phase in a well-known
model of atom-field interaction, namely, the Dicke model. We introduce an
appropriate polar decomposition of the atom-field relative amplitudes that
leads to a truly Hermitian relative-phase operator, whose eigenstates correctly
describe the phase properties, as we demonstrate by studying the positive
operator-valued measure derived from it. We find the probability distribution
for this relative phase and, by resorting to a numerical procedure, we study
its time evolution.Comment: 20 pages, 4 figures, submitted to Phys. Rev.
Personal Narrative Genre Study [4th grade]
This unit is intended to be a beginning of year introduction to the genre of personal narrative, with the purpose of equipping students with a solid understanding and strong examples of personal narrative writing in preparation for writing their own. Students will begin by identifying the purpose for writing a personal narrative and then uncover the components of a quality personal narrative through discussion and dissection of six mentor texts. After determining the elements of a personal narrative, students will then use those elements as guidelines for identifying and improving upon the personal narratives of others. This unit culminates with a performance task requiring students to peer examine two “peer work samples”, both identifying strengths in the writing and areas where improvements could be made. Ideally, this unit would be immediately followed with a unit on personal narrative writing
- …