18,322 research outputs found

    The stellar content of the Local Group dwarf galaxy Phoenix

    Get PDF
    We present new deep VIVI ground-based photometry of the Local Group dwarf galaxy Phoenix. Our results confirm that this galaxy is mainly dominated by red stars, with some blue plume stars indicating recent (100 Myr old) star formation in the central part of the galaxy. We have performed an analysis of the structural parameters of Phoenix based on an ESO/SRC scanned plate, in order to search for differentiated component. The results were then used to obtain the color-magnitude diagrams for three different regions of Phoenix in order to study the variation of the properties of its stellar population. The young population located in the central component of Phoenix shows a clear asymmetry in its distribution, that could indicate a propagation of star formation across the central component. The HI cloud found at 6 arcmin Southwest by Young & Lo (1997) could have been involved in this process. We also find the presence of a substantial intermediate-age population in the central region of Phoenix that would be less abundant or absent in its outer regions. This result is also consistent with the gradient found in the number of horizontal branch stars, whose frequency relative to red giant branch stars increases towards the outer part of the galaxy. These results, together with those of our morphological study, suggest the existence of an old, metal-poor population with a spheroidal distribution surrounding the younger inner component of Phoenix. This two-component structure may resemble the halo-disk structure observed in spirals, although more data, in particular on kinematics, are necessary to confirm this.Comment: 46 pages, 21 figures, 9 Tables, to be published in AJ, August 9

    Thanks, but no thanks: women's avoidance of help-seeking in the context of a dependency-related stereotype

    Get PDF
    The stereotype that women are dependent on men is a commonly verbalized, potentially damaging aspect of benevolent sexism. We investigated how women may use behavioral disconfirmation of the personal applicability of the stereotype to negotiate such sexism. In an experiment (N = 86), we manipulated female college students’ awareness that women may be stereotyped by men as dependent. We then placed participants in a situation where they needed help. Women made aware of the dependency stereotype (compared to controls who were not) were less willing to seek help. They also displayed a stronger negative correlation between help-seeking and post help-seeking affect - such that the more help they sought, the worse they felt. We discuss the relevance of these findings for research concerning women’s help-seeking and their management of sexist stereotyping in everyday interaction. We also consider the implications of our results for those working in domains such as healthcare, teaching and counseling, where interaction with individuals in need and requiring help is common

    Equivariant Poincar\'e series of filtrations and topology

    Full text link
    Earlier, for an action of a finite group GG on a germ of an analytic variety, an equivariant GG-Poincar\'e series of a multi-index filtration in the ring of germs of functions on the variety was defined as an element of the Grothendieck ring of GG-sets with an additional structure. We discuss to which extend the GG-Poincar\'e series of a filtration defined by a set of curve or divisorial valuations on the ring of germs of analytic functions in two variables determines the (equivariant) topology of the curve or of the set of divisors

    Semiquantitative theory of electronic Raman scattering from medium-size quantum dots

    Full text link
    A consistent semiquantitative theoretical analysis of electronic Raman scattering from many-electron quantum dots under resonance excitation conditions has been performed. The theory is based on random-phase-approximation-like wave functions, with the Coulomb interactions treated exactly, and hole valence-band mixing accounted for within the Kohn-Luttinger Hamiltonian framework. The widths of intermediate and final states in the scattering process, although treated phenomenologically, play a significant role in the calculations, particularly for well above band gap excitation. The calculated polarized and unpolarized Raman spectra reveal a great complexity of features and details when the incident light energy is swept from below, through, and above the quantum dot band gap. Incoming and outgoing resonances dramatically modify the Raman intensities of the single particle, charge density, and spin density excitations. The theoretical results are presented in detail and discussed with regard to experimental observations.Comment: Submitted to Phys. Rev.

    Storage of classical information in quantum spins

    Get PDF
    Digital magnetic recording is based on the storage of a bit of information in the orientation of a magnetic system with two stable ground states. Here we address two fundamental problems that arise when this is done on a quantized spin: quantum spin tunneling and back-action of the readout process. We show that fundamental differences exist between integer and semi-integer spins when it comes to both, read and record classical information in a quantized spin. Our findings imply fundamental limits to the miniaturization of magnetic bits and are relevant to recent experiments where spin polarized scanning tunneling microscope reads and records a classical bit in the spin orientation of a single magnetic atom

    Black hole evaporation with separated fermions

    Get PDF
    In models with a low quantum gravity scale, a well-motivated reason to expect quark and lepton fields are localized but physically separated is to avoid proton decay. This could happen in a ``fat-brane'' or in an additional, orthogonal 1/TeV sized dimension in which the gauge and Higgs fields live throughout. Black holes with masses of order the quantum gravity scale are therefore expected to evaporate non-universally, preferentially radiating directly into quarks or leptons but not both. Should black holes be copiously produced at a future hadron collider, we find the ratio of final state jets to charged leptons to photons is 113:8:1, which differs from previous analyses that assumed all standard model fields live at the same point in the extra dimensional space.Comment: 5 pages, REVTe

    Quantum simulation of Anderson and Kondo lattices with superconducting qubits

    Full text link
    We introduce a mapping between a variety of superconducting circuits and a family of Hamiltonians describing localized magnetic impurities interacting with conduction bands. This includes the Anderson model, the single impurity one- and two-channel Kondo problem, as well as the 1D Kondo lattice. We compare the requirements for performing quantum simulations using the proposed circuits to those of universal quantum computation with superconducting qubits, singling out the specific challenges that will have to be addressed.Comment: Longer versio

    Measurement of the parity violating 6S-7S transition amplitude in cesium achieved within 2 \times 10^{-13} atomic-unit accuracy by stimulated-emission detection

    Full text link
    We exploit the process of asymmetry amplification by stimulated emission which provides an original method for parity violation (PV) measurements in a highly forbidden atomic transition. The method involves measurements of a chiral, transient, optical gain of a cesium vapor on the 7S-6P_{3/2} transition, probed after it is excited by an intense, linearly polarized, collinear laser, tuned to resonance for one hyperfine line of the forbidden 6S-7S transition in a longitudinal electric field. We report here a 3.5 fold increase, of the one-second-measurement sensitivity, and subsequent reduction by a factor of 3.5 of the statistical accuracy compared with our previous result [J. Gu\'ena et al., Phys. Rev. Lett. 90, 143001 (2003)]. Decisive improvements to the set-up include an increased repetition rate, better extinction of the probe beam at the end of the probe pulse and, for the first time to our knowledge, the following: a polarization-tilt magnifier, quasi-suppression of beam reflections at the cell windows, and a Cs cell with electrically conductive windows. We also present real-time tests of systematic effects, consistency checks on the data, as well as a 1% accurate measurement of the electric field seen by the atoms, from atomic signals. PV measurements performed in seven different vapor cells agree within the statistical error. Our present result is compatible with the more precise Boulder result within our present relative statistical accuracy of 2.6%, corresponding to a 2 \times 10^{-13} atomic-unit uncertainty in E_1^{pv}. Theoretical motivations for further measurements are emphasized and we give a brief overview of a recent proposal that would allow the uncertainty to be reduced to the 0.1% level by creating conditions where asymmetry amplification is much greater.Comment: Article 21 pages, 6 figures, 3 tables Typos, addition of few comments and little more data (1 week) leading to a slight reduction of the error bar Accepted for publication in Phys.Rev.
    • 

    corecore