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Digital magnetic recording is based on the storage of a bit of information in the orientation of a

magnetic system with two stable ground states. Here we address two fundamental problems that arise

when this is done on a quantized spin: quantum spin tunneling and backaction of the readout process. We

show that fundamental differences exist between integer and semi-integer spins when it comes to both

reading and recording classical information in a quantized spin. Our findings imply fundamental limits to

the miniaturization of magnetic bits and are relevant to recent experiments where a spin-polarized

scanning tunneling microscope reads and records a classical bit in the spin orientation of a single magnetic

atom.
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Recent experimental breakthroughs have laid the foun-
dations for atomic-scale data storage, showing the capa-
bility to read and manipulate the spin of a single magnetic
atom with a spin-polarized scanning tunneling microscope
(SP-STM) [1–3]. Readout is based on tunneling magneto-
resistance at the atomic scale [1]: for a fixed spin polariza-
tion in the tip, the resistance is higher when the magnetic
adatom spin is antiparallel to it. Spin manipulation is based
on spin-transfer torque at the atomic scale [2,4]: angular
momentum is transferred from the spin-polarized tunneling
electrons to the magnetic atom. When the magnetic atom is
weakly coupled to the conducting substrate, which can be
done thanks to a monoatomic layer of insulating material
[5], the spin of the magnetic atom is quantized, and it can
be described by a single spin Hamiltonian, identical to that
of single molecule magnets [6], as revealed by inelastic
electron tunneling spectroscopy (IETS) [2,5,7–9].

In this Letter, we address two fundamental questions that
arise when considering magnetic recording in the quantum
limit, i.e., the storage and readout of a classical bit of
information on the magnetization of a quantized spin.
First, what is the role played by spin parity in the readout
and control operations of a quantized spin? Here we show
that the two physically different stable states with opposite
magnetization required in digital magnetic recording
appear only in the case of semi-integer spins [10], for
which quantum spin tunneling [6,11,12] is forbidden. We
also demonstrate that zero-field current-induced single
atom spin switching is only possible for semi-integer spins.
The second question is how can the magnetoresistive
single spin readout be performed without disturbing the
spin state? Here we study the problem of the backaction,
akin to the quantum nondemolition [13] problem on a
decohered qubit.

The physical system of interest consists of a magnetic
atom with a quantized spin S [2,5,7–9]. The magnetic atom
is probed and controlled by a SP-STM. The quantized spin

of an atomic-scale nanomagnet on a surface can be
described with a single ion Hamiltonian [2,5,7–9]:

H Spin ¼ DŜ2z þ EðŜ2x � Ŝ2yÞ þ g�B
~̂S � ~B; (1)

where D and E define the uniaxial and in-plane magnetic
anisotropy. Eigenvalues and eigenfunctions of H Spin will

be denoted by EM and jMi, respectively. The above
Hamiltonian accounts for the measured IETS in S ¼ 1 Fe
phthalocyanine [14] and Mn-12-acetate (S ¼ 10) [15], and
transition metal adatoms: Co (S ¼ 3=2) [7], Fe (S ¼ 2),
and Mn (S ¼ 5=2) [5].
The Hamiltonian of the total system features a single

ion Hamiltonian exchange coupled to the transport elec-
trons [4,16,17], H ¼ H T þH S þH Spin þV , where

H T þH S ¼ P
�;���ð�Þcy�;�c�;� describes the tip and

surface electrodes, with quantum numbers � � ð ~k; �Þ and
�, the momentum ~k, electrode (� ¼ T, S), and spin pro-
jection� along the tip polarization axis. We assume a spin-

polarized tip with polarization ~P T and a spin-unpolarized
substrate S. The V term describes interactions between
tip, surface, and the magnetic atom:

V ¼ X
�;�0;�;�0

�
T ð0Þ

�;�0
���0

2
þT �;�0 ~S � ~���0

2

�
cy�;�c�0�0 ; (2)

with ~� the Pauli matrices vector and ~S the magnetic atom
spin. Equation (2) describes both spin-independent tunnel-

ing, described by the T ð0Þ
�;�0 term, and spin-dependent pro-

cesses, described by the T �;�0 term, where carriers can

either remain in the same electrode, providing the most
efficient atomic-spin relaxation channel, or switch sides,
which gives rise to spin-dependent tunneling current.
Neglecting their momentum dependence, the exchange

integrals can be written as T ð0Þ
��0 ¼ v�v�0T0 and T �;�0 ¼

TJv�v�0 , with the spinless T0 and spinfull TJ tunneling
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matrix elements, while vT and vS are two dimensionless
parameters that describe the strength of the tip-atom and
surface-atom single-particle hoppings.

In the weak coupling regime, the effect of V can be
accounted for within the lowest order Fermi golden rule.
We assume that the correlation time of the reservoirs
formed by the electron gases at the tip and surface is short
enough so that non-Markovian effects are negligible [18].
The dissipative dynamics of the atomic spin under the
influence of the dissipative coupling to the tip and substrate
is described in terms of a Bloch-Redfield (BR) master
equation in which the coupling to the reservoirs is
included up to second order in the coupling V : @t�̂ ¼
� i

@
½H Spin; �̂� þL�̂, withL the Liouvillian that accounts

for the Kondo coupling V [18]. This equation describes
the evolution of the diagonal terms in the density matrix,
the occupations PM � �M;M, as well as the off-diagonal

terms or coherences, �M;M0 . In steady state, the density

matrix described by the BR master equation only contains
diagonal terms [18].

It is convenient to define the following scattering rate

�aa0
�;�0 ð�Þ ¼ TaTa0����0v2

�v
2
�0
	�

2@
; (3)

where � is some energy scale relevant for the process in
question, a � 0, J, and �� is the density of states at the

Fermi energy in electrode �.
The elastic conductance has a contribution coming from

the spinless tunneling, g0 � 2e2@��
00
TSð�Þ, which plays no

role in the remainder of the manuscript (e is the elementary
charge). From the experimental linear conductance we get
that �00

TSð1 meVÞ ¼ I=e� 0:1–5 GHz [2]. The spin read-

out is based on a second contribution to the elastic con-
ductance coming from elastic exchange between transport
electrons and the spin S, which gives rise to a spin-valve
term in the total conductance [4]:

GelðVÞ � g0

�
1þ 2

TJ

T0

h ~Si: ~P T

�
; (4)

where h ~Si is the expectation value of the electronic spin:

h ~Si ¼ X
M

PMðVÞhMj ~SjMi: (5)

Thus, for finite tip polarization, the conductance is sensi-

tive to the expected value h ~Si. Thus, if the quantum spin at
zero-applied field can be in two different spin states with

different hMj ~SjMi, ideally parallel and antiparallel to the
tip moment, then a magnetoresistive readout of a classical
bit of information on a quantum spin is possible.

We now discuss the necessary conditions for the exis-
tence of two degenerate ground states. First, the spin
should be semi-integer. Kramer’s theorem [10] states
that, at zero field and with E � 0, integer spin systems
have a nondegenerate spectrum, but semi-integer spins
have, at least, a twofold degeneracy. These zero-field

splittings can be interpreted in terms of quantum spin
tunneling, which is suppressed for semi-integer S [11].
Thus, the E term splits all the doublets of the E ¼ 0
spectrum only for integer S. Zero-field splitting for integer
spins has a very important consequence, which derives
from the following general result. For zero-applied mag-

netic field, the matrix elements hMj ~SjMi are zero for every
nondegenerate eigenstate of H Spin [19]. This has far

reaching consequences: at zero field, quantized integer
spins do not have net magnetic moment, making them
invisible to both magnetoresistive detection and magnetic
imaging.
Second, for semi-integer spin D should be negative, so

that the zero-field ground state doublet is not the Sz ¼
�1=2, which might result in a Kondo effect [7], but the
doublet with maximal �Sz for which the Kondo tempera-
ture is exponentially reduced [20]. For semi-integer S and
D< 0, an arbitrary small magnetic field along an arbitrary

direction �̂ will choose between the two ground states

‘‘þ’’ and ‘‘�,’’ resulting in h�j ~S � �̂j�i � 0. These two
states provide the physical realization of the two logical
states of the classical bit.
In the following, we illustrate our discussion with the

case of Fe and Mn deposited on a decoupling monolayer of
Cu2N on Cu. IETS on this system [5] portraits Fe as S ¼ 2
spin with DFe ¼ �1:55 meV and EFe ¼ 0:31 meV and
single ground states, jþFei ’ j þ 2i þ j � 2i, and Mn as
a S ¼ 5=2 spin with DMn ¼ �39 �eV and EMn ¼ 7 �eV
and two degenerate ground states at zero field. A scheme of
their energy levels is shown in Figs. 1(a) and 1(b).
Even if the two ground states of a semi-integer spin are

protected from quantum spin tunneling, we have to con-
sider how their exchange coupling to the electrons in the
substrate affects their capability to store a classical bit.
Whereas inelastic scattering is exponentially suppressed
when both bias and temperature are smaller than the exci-
tation energy, elastic scattering is unavoidable and has a
profound influence, giving rise both to decoherence and to
population scattering.
For the two ground states � of the quantized spin, to

behave as a classical bit, quantum coherence between them
needs to be suppressed [21]. Within the BR approach, the
coherence between the relevant off-diagonal element of the
density matrix element satisfies the equation @t�þ;� ¼
��þ;��þ;� [18]. The decoherence rate �þ;� contains

contributions from both the inelastic terms and the elastic
or pure dephasing terms, which do not involve population
transfer [18]. The substrate-mediated pure dephasing rate,
�elþ;� ¼ 1=Tel

2 , is given by:

�elþ;� ¼ �JJ
SSðkBTÞ
4

jhþjSzjþi � h�jSzj�ij2; (6)

with kB the Boltzmann constant. This formula has an
appealing physical interpretation: the electrons in the res-
ervoir act as a spin which-path detector [22] that, due to
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spin-conserving exchange, is sensitive to the different spin
orientation of the ground states of the magnetic atom and
destroys the coherence between them [23]. The ground
states are given by jg�i / ½j � Si þP

ncnðEDÞ2nj�
S� 2ni�, where n ¼ 1; 2; . . . ; S� 1

2 , and cn are dimen-

sionless numbers of order 1, so that we have �elþ;� ’
�JJ
SSðkBTÞS2, plus corrections of order ðE=jDjÞ2.
In addition, elastic exchange to the substrate electrons

causes population transfer between the two ground states,
and thereby memory loss. The corresponding rate �el ¼
1=Tel

1 is given by

�el ¼ �JJ
S;SðkBTÞ

X
a¼x;y;z

jh�jSajþij2: (7)

The elastic scattering matrix element can be approximated
by jh�jSajþij2 / ðE=DÞ2S�1, so that population scattering
is only possible due to the combined action of exchange
and in-plane anisotropy [20]. The ratio between decoher-
ence and population scattering rate yields Tel

1 =T
el
2 �

S2ðjDj=EÞ2S�1, 4 orders of magnitude larger than the mini-
mal value T1=T2 ¼ 1=2, in a system without pure dephas-
ing. This ratio is approximately 6	 103 for Mn on Cu2N.
Numerical calculations, shown in Fig. 2(a), yield popula-
tion lifetimes in the range of microseconds for S ¼ 5=2
and jDj ¼ 5E ¼ 1 meV at 0.4 K.

We now turn our attention to the effect of parity on the
process of magnetic recording, based on atomic-scale spin-
transfer torque. The current flowing through the spin-
polarized tip transfers angular momentum to the atomic
spin. When the transfer rate exceeds the spin relaxation
rate, the spin is driven out of equilibrium. In the case of

semi-integer S at zero-applied magnetic field, this can
result in the preferential occupation of one of the two
ground states and the depletion of the other producing a
net magnetic moment hSzi, see Eq. (5). The population
transfer between the two ground states takes place through
inelastic excitation of the excited state doublets by ex-
changing the spin with the transport electrons [2,4]. The
transition rate where a majority electron from the tip spin
flips and goes to the surface reads (positive applied voltage
in our sign convention) [24]:

�inel � �JJ
TSðj�þ eVjÞjhþjSþjxþij2; (8)

where we have assumed that jeVj 
 �, kBT while jxþi
refers to the excited state connected to jþi. In fact, the
efficiency of the process is greatly enhanced when either
bias or temperature are higher than the inelastic excitation
energy,� ’ ð2S� 1ÞjDj for half-integer spin S. In the case
of integer spins, inelastic excitations also transfer popula-
tion between the two tunnel-split ground states, but as the
expectation value of the magnetic moment in Eq. (5) at
zero field is null in both states, then hSzi ¼ 0, no matter
which nonequilibrium distribution is achieved.
In Figs. 1(c) and 1(d) we plot hSzi, defined in Eq. (5), as a

function of a magnetic field for 3 situations: zero bias,
þ10 meV, and �10 meV, for both Fe and Mn on Cu2N
with finite tip polarization. At zero bias, we obtain a
paramagnetic equilibrium magnetization curve, with sig-
nificantly larger slope for the semi-integer case. At finite
bias, spin transfer favors spin alignment parallel (V < 0) or
antiparallel (V > 0) to the magnetic moment of the tip. The
striking difference between integer and semi-integer spin is
apparent in the figure. For integer spin, the magnetic mo-
ment is always null at zero field and the effect of bias is to

FIG. 2 (color online). (a) Substrate-mediated elastic spin re-
laxation rate �el in units of �0 � �JJ

S;Sð1 meVÞ for an ideal half-

integer spin system with D ¼ �5jEj ¼ �1 meV and T ¼
0:4 K. (b) Total relaxation rate (�inel þ �el) for S ¼ 5=2 at three
different temperatures. Here P T ¼ �1, vS ¼ 1, vT ¼ 0:7,
TJ=T0 ¼ 0:5, and �2

ST
2
J ¼ 0:01.

FIG. 1 (color online). Schematic evolution of the energy spec-
trum and degeneracies versus E for: (a) integer spin S ¼ 2 and
(b) half-integer spin S ¼ 5=2. Magnetization curves of the Fe (c)
and Mn (d) adatoms probed with a spin-polarized tip with P T ¼
0:74 for three applied biases: V ¼ 0 (thick solid line), V ¼
�10 meV (dashed line), and V ¼ þ10 meV (dotted-dashed
line). Here T ¼ 0:5 K, TJ=T0 ¼ 0:5, v� ¼ 1, and �T ¼ �S.
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heat the atomic spin decreasing the absolute value of hSzi
with respect to the zero bias case. For semi-integer spin, the
atomic spin takes a bias dependent value at zero field.
Hence, we find that zero-field current driven control of
the magnetic moment of a single spin is only possible for
semi-integer spin.

We now address the problem of backaction and the con-
ditions under which a SP-STM can perform the quantized
spin readout without perturbing the atomic-spin state,
avoiding the loss of the classical information. In other
words, we look for a quantum nondemolition measurement
[13] of the atomic spin using SP-STM, with the caveat that
the atomic spin is decohered. Themagnetoresistive readout,
Eq. (4), is made possible by the tunneling exchange cou-
pling between the quantum spin and the transport electrons.
Specifically, it is based on the non-spin-flip or Ising cou-
pling, Sz�z, which does not flip the atomic spin. However,
due to the spin-rotational invariance of the tunneling ex-
change, Eq. (2), the Ising term goes together with the flip-
flop terms, Sþ�� þ S��þ, which induces atomic-spin
scattering with the selection rule �Sz ¼ �1 and permits
the recording through the spin-transfer torque. Thus, as in
many other instances, the reading mechanism entails some
degree of backaction on the probed system. The backaction
occurs via inelastic spin-flip events, �inel, and elastic spin
tunneling assisted by spin flip, �el. The rate �inel takes off
when either bias or temperature provides the excitation
energy, while �el depends only on kBT, see Eq. (7).

A nondemolition readout of the spin requires a measur-
ing time 
 significantly shorter than the spin lifetime, 
 �
T1 � ð�inel þ �elÞ�1. Regardless of the instrumentation,
the measuring time has a fundamental limit given by the
condition that shot noise �I should be smaller than the
current, �I= �I � 1, where �I is the average current mea-

sured during 
. For Poissonian noise, we have �I ¼
ðe
 �IÞ1=2, which defining the average time for a single elec-

tron passage, 
e ¼ e= �I, translates into the condition 
 


e. In other words, many tunneling events are necessary to
perform the magnetoresistive single spin readout.

Current experiments are done with �I in the range of nA,
which yields 
e � 0:2 ns, so that the measuring time is
bound by below by 1 ns. However, state of the art instru-
mentation requires much larger measuring times, in the
range of 1 �s–1 ms [25,26]. Our numerical simulations,
summarized in Fig. 2(a), show that at T ¼ 0:4 K, in order
to have a zero-current spin lifetime longer than the state of
the art measuring time, we would require systems with
S � 5=2 and excitation energies � * 4 meV, assuming an
experimentally attainable [2] zero bias conductance
Gð0Þ � 0:01G0. In order to satisfy the T1 
 
� 1 �s
criteria, for Mn on Cu2N, temperature should be reduced
below 10 mK. We note that Co on Cu2N has S ¼ 3=2 and
� ’ 5 meV, but positiveD [7]. Figure 2(b) also shows that,
during the magnetoresistive readout, the inelastic scatter-
ing can be kept 1 order of magnitude below the elastic one

provided that jeVj is kept below 0:1�. All things consid-
ered, the nondemolition readout is almost within reach of
state of the art techniques.
In summary, we have studied the limitations imposed by

quantum mechanics to store a classical bit of information
in the magnetization direction of a quantized spin. We have
considered two different types of quantum effects that limit
classical magnetic recording: spin parity and backaction
during a magnetoresistive readout. We have found that
only semi-integer spins with an easy axis can have two
ground states with opposite magnetization which can be
read and written using a SP-STM. The storage time is
limited, when unobserved, by the elastic spin-flip rate.
Magnetoresistive readout induces additional inelastic spin
scattering. In addition, shot noise imposes a lower limit to
the measuring time when doing a nondemolition measure-
ment of the quantum spin.
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