628 research outputs found

    Determination of jet fuel thermal deposit rate using a modified JFTOT

    Get PDF
    Three fuels having different breakpoint temperatures were studied in the modified jet fuel thermal oxidation tester. The lower stability fuel with a breakpoint of 240 C was first stressed at a constant temperature. After repeating this procedure at several different temperatures, an Arrehenius plot was drawn from the data. The correlation coefficient and the energy of activation were calculated to be 0.97 and 8 kcal/mole respectively. Two other fuels having breakpoint temperatures of 271 C and 285 C were also studied in a similar manner. A straight line was drawn through the data at a slope equivalent to the slope of the lower stability fuel. The deposit formation rates for the three fuels were determined at 260 C, and a relative deposit formation rate at this temperature was calculated and plotted as a function of the individual fuel's breakpoint temperatures

    Discovery of three nearby L dwarfs in the Southern Sky

    Full text link
    We report the discovery of three L dwarfs in the solar vicinity within 30 parsecs. These objects were originally found as proper motion objects from a combination of R and I photographic plates measured as part of the SuperCOSMOS Sky Surveys. We subsequently identified these objects as bona fide brown dwarf candidates on the basis of their R-I colour, as first criterion, and subsequently their J-K colours when the infrared data were available from the 2MASS database. Spectroscopic observations in the optical with the ESO 3.6m/EFOSC2 and in the near-infrared with the NTT/SOFI led to the classification of their spectral types as early L dwarfs.Comment: 4 pages including 2 figures, accepted for publication in Astronomy and Astrophysics Letter

    Keck Imaging of Binary L Dwarfs

    Get PDF
    We present Keck near-infrared imaging of three binary L dwarf systems, all of which are likely to be sub-stellar. Two are lithium dwarfs, and a third exhibits an L7 spectral type, making it the coolest binary known to date. All have component flux ratios near 1 and projected physical separations between 5 and 10 AU, assuming distances of 18 to 26 pc from recent measurements of trigonometric parallax. These surprisingly similar binaries represent the sole detections of companions in ten L dwarf systems which were analyzed in the preliminary phase of a much larger dual-epoch imaging survey. The detection rate prompts us to speculate that binary companions to L dwarfs are common, that similar-mass systems predominate, and that their distribution peaks at radial distances in accord both with M dwarf binaries and with the radial location of Jovian planets in our own solar system. To fully establish these conjectures against doubts raised by biases inherent in this small preliminary survey, however, will require quantitative analysis of a larger volume-limited sample which has been observed with high resolution and dynamic range.Comment: LaTex manuscript in 13 pages, 3 postscript figures, Accepted for publication in the Letters of the Astrophysical Journal; Postscript pre-print version available at: http://www.hep.upenn.edu/PORG/papers/koerner99a.p

    A Planetary Companion to the Nearby M4 Dwarf, Gliese 876

    Get PDF
    Doppler measurements of the M4 dwarf star, Gliese 876, taken at both Lick and Keck Observatory reveal periodic, Keplerian velocity variations with a period of 61 days. The orbital fit implies that the companion has a mass of, M = 2.1 MJUP /sin i, an orbital eccentricity of, e = 0.27+-0.03, and a semimajor axis of, a = 0.21 AU. The planet is the first found around an M dwarf, and was drawn from a survey of 24 such stars at Lick Observatory. It is the closest extrasolar planet yet found, providing opportunities for follow--up detection. The presence of a giant planet on a non-circular orbit, 0.2 AU from a 1/3 M_Sun star, presents a challenge to planet formation theory. This planet detection around an M dwarf suggests that giant planets are numerous in the Galaxy.Comment: 13 pages, 3 Figure

    Resolved Spectroscopy of M Dwarf/L Dwarf Binaries. II. 2MASS J 17072343-0558249AB

    Get PDF
    We present IRTF SpeX observations of the M/L binary system 2MASS J17072343-0558249. SpeX imaging resolves the system into a 1"01+/-0.17 visual binary in which both components have red near infrared colors. Resolved low-resolution (R~150) 0.8-2.5 micron spectroscopy reveals strong H2O, CO and FeH bands and alkali lines in the spectra of both components, characteristic of late-type M and L dwarfs. A comparison to a sample of late-type field dwarf spectra indicates spectral types M9 and L3. Despite the small proper motion of the system (0"100+/-0"009 yr^{-1}), imaging observations over 2.5 yr provide strong evidence that the two components share common proper motion. Physical association is also likely due to the small spatial volume occupied by the two components (based on spectrophotometric distances estimates of 15+/-1 pc) as compared to the relatively low spatial density of low mass field stars. The projected separation of the system is 15+/-3 AU, similar to other late-type M and L binaries. Assuming a system age of 0.5-5 Gyr, we estimate the masses of the binary components to be 0.072-0.083 and 0.064-0.077 M_sun, with an orbital period of roughly 150-300 yr. While this is nominally too long a baseline for astrometric mass measurements, the proximity and relatively wide angular separation of the 2MASS J1707-0558AB pair makes it an ideal system for studying the M dwarf/L dwarf transition at a fixed age and metallicity

    A Search for Photometric Rotation Periods in Low-Mass Stars and Brown Dwarfs in the Pleiades

    Get PDF
    We have photometrically monitored (Cousins Ic) eight low mass stars and brown dwarfs which are probable members of the Pleiades. We derived rotation periods for two of the stars - HHJ409 and CFHT-PL8 - to be 0.258 d and 0.401 d, respectively. The masses of these stars are near 0.4 and 0.08 Msun, respectively; the latter is the second such object near the hydrogen-burning boundary for which a rotation period has been measured. We also observed HHJ409 in V; the relative amplitude in the two bands shows that the spots in that star are about 200 K cooler than the stellar effective temperature of 3560 K and have a filling factor on the order of 13%. With one possible exception, the remaining stars in the sample do not show photometric variations larger than the mean error of measurement. We also examined the M9.5V disk star 2MASSJ0149, which had previously exhibited a strong flare event, but did not detect any photometric variation.Comment: 13 pages, four figures. Accepted for publication in A

    Using Magnetic Activity and Galactic Dynamics to Constrain the Ages of M Dwarfs

    Full text link
    We present a study of the dynamics and magnetic activity of M dwarfs using the largest spectroscopic sample of low-mass stars ever assembled. The age at which strong surface magnetic activity (as traced by H-alpha) ceases in M dwarfs has been inferred to have a strong dependence on mass (spectral type, surface temperature) and explains previous results showing a large increase in the fraction of active stars at later spectral types. Using spectral observations of more than 40000 M dwarfs from the Sloan Digital Sky Survey, we show that the fraction of active stars decreases as a function of vertical distance from the Galactic plane (a statistical proxy for age), and that the magnitude of this decrease changes significantly for different M spectral types. Adopting a simple dynamical model for thin disk vertical heating, we assign an age for the activity decline at each spectral type, and thus determine the activity lifetimes for M dwarfs. In addition, we derive a statistical age-activity relation for each spectral type using the dynamical model, the vertical distance from the Plane and the H-alpha emission line luminosity of each star (the latter of which also decreases with vertical height above the Galactic plane).Comment: 8 pages, 5 figures, to appear in the proceedings of IAU 258: The Ages of Star

    The 2MASS Wide-Field T Dwarf Search. IV Unting out T dwarfs with Methane Imaging

    Full text link
    We present first results from a major program of methane filter photometry for low-mass stars and brown dwarfs. The definition of a new methane filter photometric system is described. A recipe is provided for the differential calibration of methane imaging data using existing 2MASS photometry. We show that these filters are effective in discriminating T dwarfs from other types of stars, and demonstrate this with Anglo-Australian Telescope observations using the IRIS2 imager. Methane imaging data and proper motions are presented for ten T dwarfs identified as part of the 2MASS "Wide Field T Dwarf Search" -- seven of them initially identified as T dwarfs using methane imaging. We also present near-infrared moderate resolution spectra for five T dwarfs, newly discovered by this technique. Spectral types obtained from these spectra are compared to those derived from both our methane filter observations, and spectral types derived by other observers. Finally, we suggest a range of future programs to which these filters are clearly well suited: the winnowing of T dwarf and Y dwarf candidate objects coming from the next generation of near-infrared sky surveys; the robust detection of candidate planetary-mass brown dwarfs in clusters; the detection of T dwarf companions to known L and T dwarfs via deep methane imaging; and the search for rotationally-modulated time-variable surface features on cool brown dwarfs.Comment: 20 pages. To appear in The Astronomical Journal, Nov. 200

    A note on the minimum distance of quantum LDPC codes

    Full text link
    We provide a new lower bound on the minimum distance of a family of quantum LDPC codes based on Cayley graphs proposed by MacKay, Mitchison and Shokrollahi. Our bound is exponential, improving on the quadratic bound of Couvreur, Delfosse and Z\'emor. This result is obtained by examining a family of subsets of the hypercube which locally satisfy some parity conditions

    The NIRSPEC Brown Dwarf Spectroscopic Survey II: High-Resolution J-Band Spectra of M, L and T Dwarfs

    Get PDF
    We present a sequence of high resolution (R~20,000 or 15 km/s) infrared spectra of stars and brown dwarfs spanning spectral types M2.5 to T6. Observations of 16 objects were obtained using eight echelle orders to cover part of the J-band from 1.165-1.323 micron with NIRSPEC on the Keck II telescope. By comparing opacity plots and line lists, over 200 weak features in the J-band are identified with either FeH or H2O transitions. Absorption by FeH attains maximum strength in the mid-L dwarfs, while H2O absorption becomes systematically stronger towards later spectral types. Narrow resolved features broaden markedly after the M to L transition. Our high resolution spectra also reveal that the disappearance of neutral Al lines at the boundary between M and L dwarfs is remarkably abrupt, presumably because of the formation of grains. Neutral Fe lines can be traced to mid-L dwarfs before Fe is removed by condensation. The neutral potassium (K I) doublets that dominate the J-band have pressure broadened wings that continue to broaden from ~50 km/s (FWHM) at mid-M to ~500 km/s at mid-T. In contrast however, the measured pseudo-equivalent widths of these same lines reach a maximum in the mid-L dwarfs. The young L2 dwarf, G196-3B, exhibits narrow potassium lines without extensive pressure-broadened wings, indicative of a lower gravity atmosphere. Kelu-1AB, another L2, has exceptionally broad infrared lines, including FeH and H2O features, confirming its status as a rapid rotator. In contrast to other late T objects, the peculiar T6 dwarf 2MASS 0937+29 displays a complete absence of potassium even at high resolution, which may be a metallicity effect or a result of a cooler, higher-gravity atmosphere.Comment: 53 pages, 21 figures, data will be available at http://www.astro.ucla.edu/~mclean/BDSSarchive
    • …
    corecore