15 research outputs found

    Continental growth seen through the sedimentary record

    Get PDF
    This work was supported by the Natural Environment Research Council [NERC grant NE/K008862/1], the Leverhulme Trust [grant RPG-2015–422], and the Australian Research Council [grant FL160100168].Sedimentary rocks and detrital minerals sample large areas of the continental crust, and they are increasingly seen as a reliable archive for its global evolution. This study presents two approaches to model the growth of the continental crust through the sedimentary archive. The first builds on the variations in U-Pb, Hf and O isotopes in global databases of detrital zircons. We show that uncertainty in the Hf isotope composition of the mantle reservoir from which new crust separated, in the 176Lu/177Hf ratio of that new crust, and in the contribution in the databases of zircons that experienced ancient Pb loss(es), adds some uncertainty to the individual Hf model ages, but not to the overall shape of the calculated continental growth curves. The second approach is based on the variation of Nd isotopes in 645 worldwide fine-grained continental sedimentary rocks with different deposition ages, which requires a correction of the bias induced by preferential erosion of younger rocks through an erosion parameter referred to as K. This dimensionless parameter relates the proportions of younger to older source rocks in the sediment, to the proportions of younger to older source rocks present in the crust from which the sediment was derived. We suggest that a Hadean/Archaean value of K = 1 (i.e., no preferential erosion), and that post-Archaean values of K = 4–6, may be reasonable for the global Earth system. Models built on the detrital zircon and the fine-grained sediment records independently suggest that at least 65% of the present volume of continental crust was established by 3 Ga. The continental crust has been generated continuously, but with a marked decrease in the growth rate at ~ 3 Ga. The period from > 4 Ga to ~ 3 Ga is characterised by relatively high net rates of continental growth (2.9–3.4 km3 yr−1 on average), which are similar to the rates at which new crust is generated (and destroyed) at the present time. Net growth rates are much lower since 3 Ga (0.6–0.9 km3 yr−1 on average), which can be attributed to higher rates of destruction of continental crust. The change in slope in the continental growth curve at ~ 3 Ga is taken to indicate a global change in the way bulk crust was generated and preserved, and this change has been linked to the onset of subduction-driven plate tectonics. At least 100% of the present volume of the continental crust has been destroyed and recycled back into the mantle since ~ 3 Ga, and this time marks a transition in the average composition of new continental crust. Continental crust generated before 3 Ga was on average mafic, dense, relatively thin (< 20 km) and therefore different from the calc-alkaline andesitic crust that dominates the continental record today. Continental crust that formed after 3 Ga gradually became more intermediate in composition, buoyant and thicker. The increase in crustal thickness is accompanied by increasing rates of crustal reworking and increasing input of sediment to the ocean. These changes may have been accommodated by a change in lithospheric strength at around 3 Ga, as it became strong enough to support high-relief crust. This time period therefore indicates when significant volumes of continental crust started to become emergent and were available for erosion and weathering, thus impacting on the composition of the atmosphere and the oceans.PostprintPeer reviewe

    A Paleoproterozoic intra-arc basin associated with a juvenile source in the Southern Brasilia Orogen : application of U-Pb and Hf-Nd isotopic analyses to provenance studies of complex areas

    Get PDF
    A. Westin and M.C. Campos Neto acknowledge support from SĂŁo Paulo Research Foundation (FAPESP) through grants 2011/13311-9, 2013/13530-8 and 2013/19095-1. A. Westin is a grant holder at FAPESP and M. C. Campos Neto is a CNPq researcher. P. A. Cawood, C. J. Hawkesworth and H. Delavault acknowledge support from Natural Environment Research Council grant NE/J021822/1.Early Proterozoic sedimentary basins are an important record of crust generation processes and consequently a fundamental key to unravelling Earth's evolution through geological time. Sediments within the basins are typically deformed and metamorphosed by subsequent tectonothermal events, which can obliterate their links to source terranes. Nd-whole-rock and detrital zircon U-Pb and Lu-Hf isotopic analyses are among the most reliable tools to be used in provenance investigations, since zircon is a resilient mineral and the Sm-Nd system is not extensively modified during metamorphism. These methods have been applied to a study of the provenance and tectonic setting of the SĂŁo Vicente Complex, preserved in a Neoproterozoic passive margin related allochthon within the Southern Brasilia Orogen. The complex consists of siliciclastic and calc-silicate gneisses with mafic and minor ultramafic rocks, which were deformed and metamorphosed during late Neoproterozoic collision between the Paranapanema Block and the SĂŁo Francisco-Congo plate. Detrital zircons indicate derivation from a juvenile Paleoproterozoic source terrane (peaks of crystallisation ages of ca. 2130 Ma, 2140 Ma and 2170 Ma; ɛHft between +0.1 and +6.0; NdTDM = 2.31-2.21 Ga; ɛNdt = +1.6 to +2.8), with a minor contribution from older continental crust. Interlayered amphibolite rocks, with juvenile signatures (ɛHft = +5.8 to +8.2; NdTDM = 2.14 and 2.30 Ga; ɛNdt = +2.2 and +3.2), yielded similar ages of 2136 ± 17 and 2143 ± 14 Ma, suggesting syn-sedimentary magmatism. Thus, the maximum age of deposition at around 2130 Ma represents the best estimate of the depositional age of the complex. The dominance of detrital zircons ages close to the age of deposition, along with syn-sedimentary magmatism, imply a convergent margin basin tectonic environment for the SĂŁo Vicente Complex, with similarities to fore arc basin and trench deposits. Amphibolite and meta-sedimentary rocks point to important juvenile magmatism around 2.14 Ga. Juvenile Rhyacian (ca. 2.1 Ga) granite-granodiorite-tonalite orthogneisses with arc-related geochemical signatures (Pouso Alegre Complex) that override the SĂŁo Vicente Complex, are the probable main source of detritus within the complex. Both basin and source were part of the southern edge of the SĂŁo Francisco plate during the assembly of West Gondwana, and served as sources for early Neoproterozoic passive margin related basins. The age of intrusive anorogenic A-type Taguar granite indicates that by 1.7 Ga the SĂŁo Vicente Complex was in a stable tectonic environment.PostprintPeer reviewe

    Tectonic settings of continental crust formation:Insights from Pb isotopes in feldspar inclusions in zircon

    Get PDF
    International audienceMost crustal rocks derive from preexisting crust, and so the composition of newly generated (juvenile) continental crust, and hence the tectonic settings of its formation, have remained difficult to determine, especially for the first billion years of Earth’s evolution. Modern primitive mantle–derived magmas have distinct U/Pb ratios, depending on whether they are generated in intraplate (mean U/Pb = 0.37) or in subduction settings (mean U/Pb = 0.10). The U/Pb ratio can therefore be used as a proxy for the tectonic settings in which juvenile continental crust is generated. This paper presents a new way to see back to the U/Pb ratios of juvenile continental crust that formed hundreds to thousands of millions of years ago, based on ion probe analysis of Pb isotopes in alkali feldspar and plagioclase inclusions within well-dated zircons. Pb isotope data are used to calculate the time-integrated U/Pb ratios (i.e., 238U/204Pb = ”) for the period between the Hf model age and the U-Pb crystallization age of the zircons. These time-integrated ratios reflect the composition of the juvenile continental crust at the time it was extracted from the mantle, and so they can be used as a proxy for the tectonic setting of formation of that crust. Two test samples with Proterozoic Hf model ages and Paleozoic crystallization ages have feldspar inclusions with measured Pb isotope ratios that overlap within analytical error for each sample. Sample Z7.3.1 from Antarctica has Pb isotope ratios (mean 206Pb/204Pb = 16.88 ± 0.08, 1σ) that indicate it was derived from source rocks with low U/Pb ratios (∌0.11), similar to those found in subduction-related settings. Sample Temora 2 from Australia has more radiogenic Pb isotope ratios (mean 206Pb/204Pb = 19.11 ± 0.23, 1σ) indicative of a source with higher U/Pb ratios (∌0.36), similar to magmas generated in intraplate settings. Analysis of detrital populations with a range of Hf model ages (e.g., Hadean to Phanerozoic), and for which zircons and their inclusions represent the only archive of their parent magmas, should ultimately open new avenues to our understanding of the formation and the evolution of the continental crust through time

    Remise des insignes de la lĂ©gion d’Honneur Ă  Huguette Delavault le 29 mai 1995

    No full text
    Ahrweiler HĂ©lĂšne, Delavault Huguette. Remise des insignes de la lĂ©gion d’Honneur Ă  Huguette Delavault le 29 mai 1995. In: DiplĂŽmĂ©es, n°174, 1995. UniversitĂ© - Femmes - Entreprises. pp. 284-288

    Geochemistry of the Society and Pitcairn-Gambier mantle plumes: what they share and do not share

    No full text
    International audienceThe South Pacific Superswell in Polynesia is associated with a large seismic mantle anomaly at depth, the Polynesian dome, and it is characterized by the volcanic activity of five different hotspots giving birth to the Marquesas, Society, Pitcairn-Gambier, Cook-Austral and Arago island chains. Here we present new isotopic and major and trace element data in basalts from two of these chains, the Society and Pitcairn-Gambier chains, in order to examine the similarities and differences of their mantle source regions. In the Society chain the entire geochemical diversity of the archipelago exists at the scale of individual islands with no systematic trend over time. In contrast, a clear geochemical dichotomy exists along the Pitcairn-Gambier chain between the old volcanoes (Muru basalts from Mururoa, Fangataufa, Gambier, > 5 My) and their younger counterparts (Pitis basalts from Pitcairn Island and Seamounts, <1 My). The Muru group has high NbN/Nb* and Ce/Pb, low 87Sr/86Sr and define a steep trend in Nd-Hf isotopic space, features that call for old eclogite in their mantle source. The unradiogenic Pb isotopic ratios of Muru basalts, well below the values observed in HIMU (“high ””’, or high 238U/204Pb) localities, are not easily explained by varying the age and composition of the eclogite and may call for the involvement of Pacific lower mantle in the source region. In contrast, the Pitis basalts share with the Society basalts low NbN/Nb* and radiogenic 87Sr/86Sr suggesting incorporation of continental material in their source region. While the Society source simply incorporates modern-like terrigenous sediments, the combination of low Ba/La, 143Nd/144Nd and 176Hf/177Hf and very high 208Pb*/206Pb* in Pitis basalts make the Pitis source unique and not sampled anywhere else on Earth. The Pitis source contains old, possibly Archean, material of unclear origin because it resembles neither modern lower continental crust nor modern pelagic sediments. Finally, the distribution of heterogeneities in the two mantle plumes is also very different: discrete filaments are randomly dispersed across the Society plume stem while eclogitic and continent-derived filaments are vertically separated under the Pitcairn-Gambier chain. By combining these results with those published for other Polynesian chains, we establish a snapshot of the composition, geometry and distribution of the crustal components present in the Polynesian dome

    Satellite Inertia Estimation and Observability Analysis

    No full text
    International audienceFine knowledge of the inertia matrix can be crucial to achieving attitude control performance for agile satellites. Moreover, for missions that do not plan inertia calibration manoeuvres, such as the CNES Microcarb mission, the performance of the estimation is directly linked to the inertia's observability during mission guidance manoeuvres. In this context, first two identification methods are compared: the Instrumental Variable (IV) and the Unscented Kalman Filter (UKF). Then, observability metrics are analysed to identify the best range of the dataset suitable for inertia estimation. Finally, we deduced a process based on observability analyses and identification to perform the estimation

    Laser-ablation MC-ICP-MS lead isotope microanalysis down to 10 ÎŒm:Application to K-feldspar inclusions within zircon

    No full text
    A routine procedure is presented to analyse Pb isotopes in K-feldspar minerals and mineral inclusions in zircon by LA-MC-ICP-MS, with a spot size down to 10 ÎŒm.</p

    Rates of generation and destruction of the continental crust:implications for continental growth

    No full text
    International audienceLess than 25% of the volume of the juvenile continental crust preserved today is older than 3 Ga, there are no known rocks older than approximately 4 Ga, and yet a number of recent models of continental growth suggest that at least 60–80% of the present volume of the continental crust had been generated by 3 Ga. Such models require that large volumes of pre-3 Ga crust were destroyed and replaced by younger crust since the late Archaean. To address this issue, we evaluate the influence on the rock record of changing the rates of generation and destruction of the continental crust at different times in Earth's history. We adopted a box model approach in a numerical model constrained by the estimated volumes of continental crust at 3 Ga and the present day, and by the distribution of crust formation ages in the present-day crust. The data generated by the model suggest that new continental crust was generated continuously, but with a marked decrease in the net growth rate at approximately 3 Ga resulting in a temporary reduction in the volume of continental crust at that time. Destruction rates increased dramatically around 3 billion years ago, which may be linked to the widespread development of subduction zones. The volume of continental crust may have exceeded its present value by the mid/late Proterozoic. In this model, about 2.6–2.3 times of the present volume of continental crust has been generated since Earth's formation, and approximately 1.6–1.3 times of this volume has been destroyed and recycled back into the mantle.This article is part of a discussion meeting issue ‘Earth dynamics and the development of plate tectonics'

    Sulfur and lead isotopic evidence of relic Archean sediments in the Pitcairn mantle plume

    Get PDF
    The isotopic diversity of oceanic island basalts (OIB) is usually attributed to the influence, in their sources, of ancient material recycled into the mantle, although the nature, age, and quantities of this material remain controversial. The unradiogenic Pb isotope signature of the enriched mantle I (EM I) source of basalts from, for example, Pitcairn or Walvis Ridge has been variously attributed to recycled pelagic sediments, lower continental crust, or recycled subcontinental lithosphere. Our study helps resolve this debate by showing that Pitcairn lavas contain sulfides whose sulfur isotopic compositions are affected by mass-independent fractionation (S-MIF down to Δ33S = −0.8), something which is thought to have occurred on Earth only before 2.45 Ga, constraining the youngest possible age of the EM I source component. With this independent age constraint and a Monte Carlo refinement modeling of lead isotopes, we place the likely Pitcairn source age at 2.5 Ga to 2.6 Ga. The Pb, Sr, Nd, and Hf isotopic mixing arrays show that the Archean EM I material was poor in trace elements, resembling Archean sediment. After subduction, this Archean sediment apparently remained stored in the deep Earth for billions of years before returning to the surface as Pitcairn®s characteristic EM I signature. The presence of negative S-MIF in the deep mantle may also help resolve the problem of an apparent deficit of negative Δ33S anomalies so far found in surface reservoirs

    Tectonic settings of continental crust formation : insights from Pb isotopes in feldspar inclusions in zircon

    Get PDF
    This work was supported by the Natural Environment Research Council (NERC grants NE/J021822/1 and NE/K008862/1) and by the Leverhulme Trust (grant RPG-2015–422).Most crustal rocks derive from preexisting crust, and so the composition of newly generated (juvenile) continental crust, and hence the tectonic settings of its formation, have remained difficult to determine, especially for the first billion years of Earth’s evolution. Modern primitive mantle–derived magmas have distinct U/Pb ratios, depending on whether they are generated in intraplate (mean U/Pb = 0.37) or in subduction settings (mean U/Pb = 0.10). The U/Pb ratio can therefore be used as a proxy for the tectonic settings in which juvenile continental crust is generated. This paper presents a new way to see back to the U/Pb ratios of juvenile continental crust that formed hundreds to thousands of millions of years ago, based on ion probe analysis of Pb isotopes in alkali feldspar and plagioclase inclusions within well-dated zircons. Pb isotope data are used to calculate the time-integrated U/Pb ratios (i.e., 238U/204Pb = ”) for the period between the Hf model age and the U-Pb crystallization age of the zircons. These time-integrated ratios reflect the composition of the juvenile continental crust at the time it was extracted from the mantle, and so they can be used as a proxy for the tectonic setting of formation of that crust. Two test samples with Proterozoic Hf model ages and Paleozoic crystallization ages have feldspar inclusions with measured Pb isotope ratios that overlap within analytical error for each sample. Sample Z7.3.1 from Antarctica has Pb isotope ratios (mean 206Pb/204Pb = 16.88 ± 0.08, 1σ) that indicate it was derived from source rocks with low U/Pb ratios (∌0.11), similar to those found in subduction-related settings. Sample Temora 2 from Australia has more radiogenic Pb isotope ratios (mean 206Pb/204Pb = 19.11 ± 0.23, 1σ) indicative of a source with higher U/Pb ratios (∌0.36), similar to magmas generated in intraplate settings. Analysis of detrital populations with a range of Hf model ages (e.g., Hadean to Phanerozoic), and for which zircons and their inclusions represent the only archive of their parent magmas, should ultimately open new avenues to our understanding of the formation and the evolution of the continental crust through time.PostprintPostprintPeer reviewe
    corecore