11 research outputs found

    Cloud morphology and dynamics in Saturn’s northern polar region

    Get PDF
    We present a study of the cloud morphology and motions in the north polar region of Saturn, from latitude ∼ 70°N to the pole based on Cassini ISS images obtained between January 2009 and November 2014. This region shows a variety of dynamical structures: the permanent hexagon wave and its intense eastward jet, a large field of permanent “puffy” clouds with scales from 10 – 500 km, probably of convective origin, local cyclone and anticyclones vortices with sizes of ∼1,000 km embedded in this field, and finally the intense cyclonic polar vortex. We report changes in the albedo of the clouds that delineate rings of circulation around the polar vortex and the presence of “plume-like” activity in the hexagon jet, in both cases not accompanied with significant variations in the corresponding jets. No meridional migration is observed in the clouds forming and merging in the field of puffy clouds, suggesting that their mergers do not contribute to the maintenance of the polar vortex. Finally, we analyze the dominant growing modes for barotropic and baroclinic instabilities in the hexagon jet, showing that a mode 6 barotropic instability is dominant at the latitude of the hexagon.This work was supported by the Spanish MICIIN projects AYA2015-65041 with FEDER support, Grupos Gobierno Vasco IT -765-13, and UFI11/55 from UPV/EHU

    The diverse meteorology of Jezero crater over the first 250 sols of Perseverance on Mars

    Get PDF
    NASA's Perseverance rover's Mars Environmental Dynamics Analyzer is collecting data at Jezero crater, characterizing the physical processes in the lowest layer of the Martian atmosphere. Here we present measurements from the instrument's first 250 sols of operation, revealing a spatially and temporally variable meteorology at Jezero. We find that temperature measurements at four heights capture the response of the atmospheric surface layer to multiple phenomena. We observe the transition from a stable night-time thermal inversion to a daytime, highly turbulent convective regime, with large vertical thermal gradients. Measurement of multiple daily optical depths suggests aerosol concentrations are higher in the morning than in the afternoon. Measured wind patterns are driven mainly by local topography, with a small contribution from regional winds. Daily and seasonal variability of relative humidity shows a complex hydrologic cycle. These observations suggest that changes in some local surface properties, such as surface albedo and thermal inertia, play an influential role. On a larger scale, surface pressure measurements show typical signatures of gravity waves and baroclinic eddies in a part of the seasonal cycle previously characterized as low wave activity. These observations, both combined and simultaneous, unveil the diversity of processes driving change on today's Martian surface at Jezero crater.This work has been funded by the Spanish Ministry of Economy and Competitiveness, through the projects no. ESP2014-54256-C4-1-R (also -2-R, -3-R and -4-R); Ministry of Science, Innovation and Universities, projects no. ESP2016-79612-C3-1-R (also -2-R and -3-R); Ministry of Science and Innovation/State Agency of Research (10.13039/501100011033), projects no. ESP2016-80320-C2-1-R, RTI2018-098728-B-C31 (also -C32 and -C33), RTI2018-099825-B-C31, PID2019-109467GB-I00 and PRE2020-092562; Instituto Nacional de Técnica Aeroespacial; Ministry of Science and Innovation’s Centre for the Development of Industrial Technology; Spanish State Research Agency (AEI) Project MDM-2017-0737 Unidad de Excelencia “María de Maeztu”—Centro de Astrobiología; Grupos Gobierno Vasco IT1366-19; and European Research Council Consolidator Grant no 818602. The US co-authors performed their work under sponsorship from NASA’s Mars 2020 project, from the Game Changing Development programme within the Space Technology Mission Directorate and from the Human Exploration and Operations Directorate. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D0004). G.M. acknowledges JPL funding from USRA Contract Number 1638782. A.G.F. is supported by the European Research Council, Consolidator Grant no. 818602

    The 2018 Martian Global Dust Storm over the South Polar Region studied with MEx/VMC

    Get PDF
    We study the 2018 Martian global dust storm (GDS 2018) over the Southern Polar Region using images obtained by the Visual Monitoring Camera (VMC) on board Mars Express (MEx) during June and July 2018. Dust penetrated into the polar cap region but never covered the cap completely, and its spatial distribution was nonhomogeneous and rapidly changing. However, we detected long but narrow aerosol curved arcs with a length of ~2,000–3,000 km traversing part of the cap and crossing the terminator into the nightside. Tracking discrete dust clouds allowed measurements of their motions that were toward the terminator with velocities up to 100 m/s. The images of the dust projected into the Martian limb show maximum altitudes of ~70 km but with large spatial and temporal variations. We discuss these results in the context of the predictions of a numerical model for dust storm scenario.This work has been supported by the Spanish project AYA2015-65041-P (MINECO/FEDER, UE) and Grupos Gobierno Vasco IT-1366-19. J. H. B. was supported by ESA Contract 4000118461/16/ES/JD, Scientific Support for Mars Express Visual Monitoring Camera. We acknowledge support from the Faculty of the European Space Astronomy Centre (ESAC). VMC raw images used in this study can be accessed through VMC raw file gallery http://blogs.esa.int/ftp/. VMC raw and calibrated images will be available in ESA PSA in the near future. A list of observations used in this paper is provided in the supporting information. MCD database files are available in http://www-mars.lmd.jussieu.fr/mars.html

    An Extremely Elongated Cloud Over Arsia Mons Volcano on Mars: I. Life Cycle

    Get PDF
    We report a previously unnoticed annually repeating phenomenon consisting of the daily formation of an extremely elongated cloud extending as far as 1,800 km westward from Arsia Mons. It takes place in the solar longitude (Ls) range of ∼220°–320°, around the Southern solstice. We study this Arsia Mons Elongated Cloud (AMEC) using images from different orbiters, including ESA Mars Express, NASA MAVEN, Viking 2, MRO, and ISRO Mars Orbiter Mission (MOM). We study the AMEC in detail in Martian year (MY) 34 in terms of local time and Ls and find that it exhibits a very rapid daily cycle: the cloud growth starts before sunrise on the western slope of the volcano, followed by a westward expansion that lasts 2.5 h with a velocity of around 170 m/s in the mesosphere (∼45 km over the areoid). The cloud formation then ceases, detaches from its formation point, and continues moving westward until it evaporates before the afternoon, when most sun-synchronous orbiters make observations. Moreover, we comparatively study observations from different years (i.e., MYs 29–34) in search of interannual variations and find that in MY33 the cloud exhibits lower activity, while in MY34 the beginning of its formation was delayed compared with other years, most likely due to the Global Dust Storm. This phenomenon takes place in a season known for the general lack of clouds on Mars. In this paper we focus on observations, and a theoretical interpretation will be the subject of a separate paper.This work has been supported by the Spanish project AYA2015-65041-P and PID2019-109467GB-I00 (MINECO/FEDER, UE) and Grupos Gobierno Vasco IT-1366-19. JHB was supported by ESA Contract No. 4000118461/16/ES/JD, Scientific Support for Mars Express Visual Monitoring Camera. The Aula EspaZio Gela is supported by a grant from the Diputación Foral de Bizkaia (BFA). We acknowledge support from the Faculty of the European Space Astronomy Center (ESAC). Special thanks are due to the Mars Express Science Ground Segment and Flight Control Team at ESAC and ESOC. The contributions by K.C and N.M.S were supported by NASA through the MAVEN project

    A planetary-scale disturbance in a long living three vortex coupled system in Saturn's atmosphere

    Get PDF
    The zonal wind profile of Saturn has a unique structure at 60°N with a double-peaked jet that reaches maximum zonal velocities close to 100 ms−1. In this region, a singular group of vortices consisting of a cyclone surrounded by two anticyclones was active since 2012 until the time of this report. Our observation demonstrates that vortices in Saturn can be long-lived. The three-vortex system drifts at u = 69.0 ± 1.6 ms−1, similar to the speed of the local wind. Local motions reveal that the relative vorticity of the vortices comprising the system is ∼2–3 times the ambient zonal vorticity. In May 2015, a disturbance developed at the location of the triple vortex system, and expanded eastwards covering in two months a third of the latitudinal circle, but leaving the vortices essentially unchanged. At the time of the onset of the disturbance, a fourth vortex was present at 55°N, south of the three vortices and the evolution of the disturbance proved to be linked to the motion of this vortex. Measurements of local motions of the disturbed region show that cloud features moved essentially at the local wind speeds, suggesting that the disturbance consisted of passively advecting clouds generated by the interaction of the triple vortex system with the fourth vortex to the south. Nonlinear simulations are able to reproduce the stability and longevity of the triple vortex system under low vertical wind shear and high static stability in the upper troposphere of Saturn.This work was supported by the Spanish MICIIN projects AYA2015-65041-P (MINECO/FEDER, UE), Grupos Gobierno Vasco IT-765-13, and UFI11/55 from UPV/EHU. EGM is supported by the Serra Hunter Programme, Generalitat de Catalunya. A. Simon, K. Sayanagi and M.H. Wong were supported by a NASA Cassini Data Analysisgrant (NNX15AD33G and NNX15AD34G). We acknowledge the three orbits assigned by the Director Discretionary time from HST for this research (DD Program 14064, IP A. Sánchez-Lavega). We are very grateful to amateur astronomers contributing with their images to open databases such as PVOL (http://pvol2.ehu.eus/) and ALPO-Japan (http://alpo-j.asahikawa-med.ac.jp/)

    An enduring rapidly moving storm as a guide to Saturn’s Equatorial jet’s complex structure

    Get PDF
    Saturn has an intense and broad eastward equatorial jet with a complex three-dimensional structure mixed with time variability. The equatorial region experiences strong seasonal insolation variations enhanced by ring shadowing, and three of the six known giant planetary-scale storms have developed in it. These factors make Saturn's equator a natural laboratory to test models of jets in giant planets. Here we report on a bright equatorial atmospheric feature imaged in 2015 that moved steadily at a high speed of 450 ms(-1) not measured since 1980-1981 with other equatorial clouds moving within an ample range of velocities. Radiative transfer models show that these motions occur at three altitude levels within the upper haze and clouds. We find that the peak of the jet ( latitudes 10 degrees N to 10 degrees S) suffers intense vertical shears reaching + 2.5 ms(-1) km(1), two orders of magnitude higher than meridional shears, and temporal variability above 1 bar altitude level. Palabras claveThis work is based on observations and analysis from Hubble Space Telescope (GO/DD program 14064), Cassini ISS images (NASA pds), and Calar Alto Observatory (CAHA-MPIA). A.S.-L. and UPV/EHU team are supported by the Spanish projects AYA2012-36666 and AYA2015-65041-P with FEDER support, Grupos Gobierno Vasco IT-765-13, Universidad del Pais Vasco UPV/EHU program UFI11/55, and Diputacion Foral Bizkaia (BFA). We acknowledge the contribution of Saturn images by T. Olivetti, M. Kardasis, A. Germano, A. Wesley, P. Miles, M. Delcroix, C. Go, T. Horiuchi and P. Maxon. We also acknowledge the wind model data provided by J. Friedson

    Nocturnal Turbulence at Jezero Crater as Determined From MEDA Measurements and Modeling

    Get PDF
    Mars 2020 Mars Environmental Dynamics Analyzer (MEDA) instrument data acquired during half of a Martian year (Ls 13°–180°), and modeling efforts with the Mars Regional Atmospheric Modeling System (MRAMS) and the Mars Climate Database (MCD) enable the study of the seasonal evolution and variability of nocturnal atmospheric turbulence at Jezero crater. Nighttime conditions in Mars's Planetary Boundary Layer are highly stable because of strong radiative cooling that efficiently inhibits convection. However, MEDA nighttime observations of simultaneous rapid fluctuations in horizontal wind speed and air temperatures suggest the development of nighttime turbulence in Jezero crater. Mesoscale modeling with MRAMS also shows a similar pattern and enables us to investigate the origins of this turbulence and the mechanisms at play. As opposed to Gale crater, less evidence of turbulence from breaking mountain wave activity was found in Jezero during the period studied with MRAMS. On the contrary, the model suggests that nighttime turbulence at Jezero crater is explained by increasingly strong wind shear produced by the development of an atmospheric bore-like disturbance at the nocturnal inversion interface. These atmospheric bores are produced by downslope winds from the west rim undercutting a strong low-level jet aloft from ∼19:00 to 01:00 LTST and from ∼01:00 LTST to dawn when undercutting weak winds aloft. The enhanced wind shear leads to a reduction in the Richardson number and an onset of mechanical turbulence. Once the critical Richardson Number is reached (Ri ∼ <0.25), shear instabilities can mix warmer air aloft down to the surface.This research was funded by Grant RTI2018-098728-B-C31 and PN2021-PID2021-126719OB-C41 by the Spanish Ministry of Science and Innovation/State Agency of Research MCIN/AEI/10.13039/501100011033. AM, ASL, TR, and RH were supported by Grant PID2019-109467GB-I00 funded by MCIN/AEI/10.13039/501100011033/and by Grupos Gobierno Vasco IT1366-19. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D0004). The JPL co-authors acknowledge funding from NASA's Space Technology Mission Directorate and the Science Mission Directorate. CEN was supported by funding from the Mars 2020 mission, part of the NASA Mars Exploration Program

    Mars 2020 Perseverance Rover Studies of the Martian Atmosphere Over Jezero From Pressure Measurements

    Get PDF
    The pressure sensors on Mars rover Perseverance measure the pressure field in the Jezero crater on regular hourly basis starting in sol 15 after landing. The present study extends up to sol 460 encompassing the range of solar longitudes from Ls ∼ 13°–241° (Martian Year (MY) 36). The data show the changing daily pressure cycle, the sol-to-sol seasonal evolution of the mean pressure field driven by the CO2 sublimation and deposition cycle at the poles, the characterization of up to six components of the atmospheric tides and their relationship to dust content in the atmosphere. They also show the presence of wave disturbances with periods 2–5 sols, exploring their baroclinic nature, short period oscillations (mainly at night-time) in the range 8–24 min that we interpret as internal gravity waves, transient pressure drops with duration ∼1–150 s produced by vortices, and rapid turbulent fluctuations. We also analyze the effects on pressure measurements produced by a regional dust storm over Jezero at Ls ∼ 155°.The UPV/EHU team (Spain) is supported by Grant PID2019-109467GB-I00 funded by 1042 MCIN/AEI/10.13039/501100011033/ and by Groups Gobierno Vasco IT1742-22. GM wants to acknowledge JPL funding from USRA Contract Number 1638782. A. Vicente-Retortillo is supported by the Spanish State Research Agency (AEI) Project No. MDM-2017-0737 Unidad de Excelencia “María de Maeztu”- Centro de Astrobiología (INTA-CSIC). Part of the research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D0004). GM wants to acknowledge JPL funding from USRA Contract Number 1638782

    Convective Vortices and Dust Devils Detected and Characterized by Mars 2020

    Get PDF
    We characterize vortex and dust devils (DDs) at Jezero from pressure and winds obtained with the Mars Environmental Dynamics Analyzer (MEDA) instrument on Mars 2020 over 415 Martian days (sols) (Ls = 6°–213°). Vortices are abundant (4.9 per sol with pressure drops >0.5 Pa correcting from gaps in coverage) and they peak at noon. At least one in every five vortices carries dust, and 75% of all vortices with Δp > 2.0 Pa are dusty. Seasonal variability was small but DDs were abundant during a dust storm (Ls = 152°–156°). Vortices are more frequent and intense over terrains with lower thermal inertia favoring high daytime surface-to-air temperature gradients. We fit measurements of winds and pressure during DD encounters to models of vortices. We obtain vortex diameters that range from 5 to 135 m with a mean of 20 m, and from the frequency of close encounters we estimate a DD activity of 2.0–3.0 DDs km−2 sol−1. A comparison of MEDA observations with a Large Eddy Simulation of Jezero at Ls = 45° produces a similar result. Three 100-m size DDs passed within 30 m of the rover from what we estimate that the activity of DDs with diameters >100 m is 0.1 DDs km−2sol−1, implying that dust lifting is dominated by the largest vortices in Jezero. At least one vortex had a central pressure drop of 9.0 Pa and internal winds of 25 ms−1. The MEDA wind sensors were partially damaged during two DD encounters whose characteristics we elaborate in detail.The authors are very grateful to the entire Mars 2020 science operations team. The authors would also like to thank Lori Fenton and an anonymous reviewer for many suggestions that greatly improved the manuscript. This work was supported by Grant PID2019-109467GB-I00 funded by MCIN/AEI/10.13039/501100011033/ and by Grupos Gobierno Vasco IT1742-22 and by the Spanish National Research, Development and Innovation Program, through the Grants RTI2018-099825-B-C31, ESP2016-80320-C2-1-R, and ESP2014-54256-C4-3-R. Baptiste Chide is supported by the Director's Postdoctoral Fellowship from the Los Alamos National Laboratory. M. Lemmon is supported by contract 15-712 from Arizona State University and 1607215 from Caltech-JPL. R. Lorenz was supported by JPL contract 1655893. Germán Martínez acknowledges JPL funding from USRA Contract Number 1638782. A. Munguira was supported by Grant PRE2020-092562 funded by MCIN/AEI and by “ESF Investing in your future.” A. Vicente-Retortillo is supported by the Spanish State Research Agency (AEI) Project No. MDM-2017-0737 Unidad de Excelencia “María de Maeztu”-Centro de Astrobiología (INTA-CSIC), and by the Comunidad de Madrid Project S2018/NMT-4291 (TEC2SPACE-CM). Part of the research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D0004). Finnish researchers acknowledge the Academy of Finland Grant 328 310529. Researchers based in France acknowledge support from the CNES for their work on Perseverance

    A self-tunable Titanium Sapphire laser by rotating a set of parallel plates of active material

    No full text
    In a recent work, the authors reported the experimental demonstration of wavelength tuning in a single birefringent plate of Ti:sapphire crystal based on its own birefringence properties. In that device, the thickness of the active plate, limited by the width of the single order tuning spectral region, imposed a strong constraint in the power performance of the laser. The aim of this work is to overcome this limitation by using a set of several identical birefringent plates so that the wavelength tuning of the laser is obtained by synchronously rotating the plates in their own plane. A discussion about the laser performance is presented.This research has been supported by the Bizkaiko Foru Aldundia-Diputación Foral de Vizcaya (DIPE 06/19), Consolider-Ingenio Program 2010 (CSD2007-00013), and Basque Country Government (IT-331-07).Peer reviewe
    corecore