67 research outputs found

    Fusion Hindrance and Pauli Blocking in 58Ni +64Ni

    Get PDF
    The argument of this thesis is the measurement of deep sub-barrier fusion cross sections for 58Ni +64Ni. In this system the influence of positive Q-value transfer channels on sub-barrier fusion was evidenced in a famous experiment by Beckerman et al.. Subsequent experiments for the two symmetric systems 58Ni +58Ni and 64Ni +64Ni showed that fusion hindrance is clearly present in both cases. The lowest measured cross section for 58Ni +64Ni, however, was relatively large (0.1 mb), so that no hindrance was observed. The present measurements have been recently performed at the XTU Tandem accelerator of LNL and the excitation function has been extended by two orders of magnitude downward. The case of 58Ni +64Ni is very similar to 40Ca+96Zr because of the flat shape of the two sub-barrier fusion excitation functions, originating from the couplings to several Q>0 neutron pick-up channels. 40Ca+96Zr was studied to very small cross sections (2b) and fusion hindrance does not show up, suggesting that this unusual behavior is due to the Q>0 transfer couplings, since the valence nucleons can flow freely from one nucleus to the other without being hindered by Pauli blocking. The present experiment indicates that the flat trend of the sub-barrier cross sections for 58Ni +64Ni continues down to the level of b and fusion hindrance is not observed. This trend at far sub-barrier energies reinforces the suggestion that the availability of several states following transfer with Q>0, effectively counterbalances the effect of Pauli repulsion that, in general, is predicted to reduce tunneling probability inside the Coulomb barrier.ope

    Fusion Hindrance and Pauli Blocking in 58Ni + 64Ni

    Get PDF
    58Ni +64Ni is the first case where the influence of positive Q-value transfer channels on sub-barrier fusion was evidenced, in a very well known experiment by Beckerman et al., by comparing with the two systems 58Ni + 58Ni and 64Ni+64Ni. Subsequent measurements on 64Ni + 64Ni showed that fusion hindrance is clearly present in this case. On the other hand, no indication of hindrance can be observed for 58Ni + 64Ni down to the measured level of 0.1 mb. In the present experiment the excitation function has been extended by two orders of magnitude downward. The cross sections for 58Ni + 64Ni continue decreasing very smoothly below the barrier, down to '1 µb. The logarithmic slope of the excitation function increases slowly, showing a tendency to saturate at the lowest energies. No maximum of the astrophysical S -factor is observed. Coupled-channels (CC) calculations using a Woods-Saxon potential and includinginelastic excitations only, underestimate the sub-barrier cross sections by a large amount. Good agreement is found by adding two-neutron transfer couplings to a schematical level. This behaviour is quite different from what already observed for 64Ni+ 64Ni (no positive Q-value transfer channels available), where a clear low-energy maximum of the S -factorappears, and whose excitation function is overestimated by a standard Woods-Saxon CC calculation. No hindrance effect is observed in 58Ni+ 64Ni in the measured energy range. This trend at deep sub-barrier energies reinforces the recent suggestion that the availability of several states following transfer with Q>0, effectively counterbalances the Pauli repulsion that, in general, is predicted to reduce tunneling probability inside the Coulomb barrier

    Discutindo a educação ambiental no cotidiano escolar: desenvolvimento de projetos na escola formação inicial e continuada de professores

    Get PDF
    A presente pesquisa buscou discutir como a Educação Ambiental (EA) vem sendo trabalhada, no Ensino Fundamental e como os docentes desta escola compreendem e vem inserindo a EA no cotidiano escolar., em uma escola estadual do município de Tangará da Serra/MT, Brasil. Para tanto, realizou-se entrevistas com os professores que fazem parte de um projeto interdisciplinar de EA na escola pesquisada. Verificou-se que o projeto da escola não vem conseguindo alcançar os objetivos propostos por: desconhecimento do mesmo, pelos professores; formação deficiente dos professores, não entendimento da EA como processo de ensino-aprendizagem, falta de recursos didáticos, planejamento inadequado das atividades. A partir dessa constatação, procurou-se debater a impossibilidade de tratar do tema fora do trabalho interdisciplinar, bem como, e principalmente, a importância de um estudo mais aprofundado de EA, vinculando teoria e prática, tanto na formação docente, como em projetos escolares, a fim de fugir do tradicional vínculo “EA e ecologia, lixo e horta”.Facultad de Humanidades y Ciencias de la Educació

    Fusion Hindrance and Pauli Blocking in 58Ni +64Ni

    Get PDF
    The argument of this thesis is the measurement of deep sub-barrier fusion cross sections for 58Ni +64Ni. In this system the influence of positive Q-value transfer channels on sub-barrier fusion was evidenced in a famous experiment by Beckerman et al.. Subsequent experiments for the two symmetric systems 58Ni +58Ni and 64Ni +64Ni showed that fusion hindrance is clearly present in both cases. The lowest measured cross section for 58Ni +64Ni, however, was relatively large (0.1 mb), so that no hindrance was observed. The present measurements have been recently performed at the XTU Tandem accelerator of LNL and the excitation function has been extended by two orders of magnitude downward. The case of 58Ni +64Ni is very similar to 40Ca+96Zr because of the flat shape of the two sub-barrier fusion excitation functions, originating from the couplings to several Q>0 neutron pick-up channels. 40Ca+96Zr was studied to very small cross sections (2b) and fusion hindrance does not show up, suggesting that this unusual behavior is due to the Q>0 transfer couplings, since the valence nucleons can flow freely from one nucleus to the other without being hindered by Pauli blocking. The present experiment indicates that the flat trend of the sub-barrier cross sections for 58Ni +64Ni continues down to the level of b and fusion hindrance is not observed. This trend at far sub-barrier energies reinforces the suggestion that the availability of several states following transfer with Q>0, effectively counterbalances the effect of Pauli repulsion that, in general, is predicted to reduce tunneling probability inside the Coulomb barrier

    Fusion of

    No full text
    Recent experiments on 12C + 24Mg and preliminary data on 12C + 26Mg show that we observe the hindrance phenomenon in these two systems that are close to the lighter ones relevant for astrophysics. The cross section at the hindrance threshold has a remarkably high value for 12C + 24Mg, while it is closer to an empirical systematics for 12C + 26Mg. The lowest-energy fusion cross sections of 12C + 24Mg are consistent with simple one-dimensional barrier penetration calculations, i.e. the coupling strengths seem to be strongly damped far below the barrier. Measurements at slightly lower energies would be essential to discriminate between different models and to allow reliably extrapolating to the lighter systems producing energy and elemental synthesis in stellar environments

    24 Mg + 12 C fusion reaching the no coupling limit far below the barrier

    No full text
    In the present work, the fusion cross section of the 12C+24Mg system has been measured down to energies far below the coulomb barrier around 4µb. This system is slightly heavier than those of astrophysical interest, like 12C+12C and 16O+16O. The data points highlight the presence of hindrance in 12C+24Mg because the excitation function is overestimated by standard Coupled-Channels calculations, and a clear maximum of the S factor has been observed. The cross section at the hindrance threshold is found to be remarkably large (σ ≈0.75mb). The S-factor maximum is nicely fitted using both an empirical interpolation in the spirit of the adiabatic model, and the hindrance parametrisation. The data far below the barrier may suggest that the coupling strengths gradually decrease and vanish so that the excitation function seems to be well reproduced by a simple one-dimensional tunnelling through the potential barrier in that energy range. On the other hand, the equally good fit obtained with the hindrance model, indicates that discriminating between the two approaches would require further precise measurements at slightly lower energies

    Fusion Hindrance and Pauli Blocking in 58Ni + 64Ni

    Get PDF
    58Ni +64Ni is the first case where the influence of positive Q-value transfer channels on sub-barrier fusion was evidenced, in a very well known experiment by Beckerman et al., by comparing with the two systems 58Ni + 58Ni and 64Ni+64Ni. Subsequent measurements on 64Ni + 64Ni showed that fusion hindrance is clearly present in this case. On the other hand, no indication of hindrance can be observed for 58Ni + 64Ni down to the measured level of 0.1 mb. In the present experiment the excitation function has been extended by two orders of magnitude downward. The cross sections for 58Ni + 64Ni continue decreasing very smoothly below the barrier, down to '1 µb. The logarithmic slope of the excitation function increases slowly, showing a tendency to saturate at the lowest energies. No maximum of the astrophysical S -factor is observed. Coupled-channels (CC) calculations using a Woods-Saxon potential and includinginelastic excitations only, underestimate the sub-barrier cross sections by a large amount. Good agreement is found by adding two-neutron transfer couplings to a schematical level. This behaviour is quite different from what already observed for 64Ni+ 64Ni (no positive Q-value transfer channels available), where a clear low-energy maximum of the S -factorappears, and whose excitation function is overestimated by a standard Woods-Saxon CC calculation. No hindrance effect is observed in 58Ni+ 64Ni in the measured energy range. This trend at deep sub-barrier energies reinforces the recent suggestion that the availability of several states following transfer with Q>0, effectively counterbalances the Pauli repulsion that, in general, is predicted to reduce tunneling probability inside the Coulomb barrier

    "Delirium Day": A nationwide point prevalence study of delirium in older hospitalized patients using an easy standardized diagnostic tool

    Get PDF
    Background: To date, delirium prevalence in adult acute hospital populations has been estimated generally from pooled findings of single-center studies and/or among specific patient populations. Furthermore, the number of participants in these studies has not exceeded a few hundred. To overcome these limitations, we have determined, in a multicenter study, the prevalence of delirium over a single day among a large population of patients admitted to acute and rehabilitation hospital wards in Italy. Methods: This is a point prevalence study (called "Delirium Day") including 1867 older patients (aged 65 years or more) across 108 acute and 12 rehabilitation wards in Italian hospitals. Delirium was assessed on the same day in all patients using the 4AT, a validated and briefly administered tool which does not require training. We also collected data regarding motoric subtypes of delirium, functional and nutritional status, dementia, comorbidity, medications, feeding tubes, peripheral venous and urinary catheters, and physical restraints. Results: The mean sample age was 82.0 ± 7.5 years (58 % female). Overall, 429 patients (22.9 %) had delirium. Hypoactive was the commonest subtype (132/344 patients, 38.5 %), followed by mixed, hyperactive, and nonmotoric delirium. The prevalence was highest in Neurology (28.5 %) and Geriatrics (24.7 %), lowest in Rehabilitation (14.0 %), and intermediate in Orthopedic (20.6 %) and Internal Medicine wards (21.4 %). In a multivariable logistic regression, age (odds ratio [OR] 1.03, 95 % confidence interval [CI] 1.01-1.05), Activities of Daily Living dependence (OR 1.19, 95 % CI 1.12-1.27), dementia (OR 3.25, 95 % CI 2.41-4.38), malnutrition (OR 2.01, 95 % CI 1.29-3.14), and use of antipsychotics (OR 2.03, 95 % CI 1.45-2.82), feeding tubes (OR 2.51, 95 % CI 1.11-5.66), peripheral venous catheters (OR 1.41, 95 % CI 1.06-1.87), urinary catheters (OR 1.73, 95 % CI 1.30-2.29), and physical restraints (OR 1.84, 95 % CI 1.40-2.40) were associated with delirium. Admission to Neurology wards was also associated with delirium (OR 2.00, 95 % CI 1.29-3.14), while admission to other settings was not. Conclusions: Delirium occurred in more than one out of five patients in acute and rehabilitation hospital wards. Prevalence was highest in Neurology and lowest in Rehabilitation divisions. The "Delirium Day" project might become a useful method to assess delirium across hospital settings and a benchmarking platform for future surveys

    Observation of the rare Bs0oμ+μB^0_so\mu^+\mu^- decay from the combined analysis of CMS and LHCb data

    No full text

    Measurement of the charge ratio of atmospheric muons with the CMS detector

    No full text
    We present a measurement of the ratio of positive to negative muon fluxes from cosmic ray interactions in the atmosphere, using data collected by the CMS detector both at ground level and in the underground experimental cavern at the CERN LHC. Muons were detected in the momentum range from 5 GeV/ c to 1 TeV/ c . The surface flux ratio is measured to be 1.2766±0.0032(stat.)±0.0032(syst.) , independent of the muon momentum, below 100 GeV/ c . This is the most precise measurement to date. At higher momenta the data are consistent with an increase of the charge ratio, in agreement with cosmic ray shower models and compatible with previous measurements by deep-underground experiments.We present a measurement of the ratio of positive to negative muon fluxes from cosmic ray interactions in the atmosphere, using data collected by the CMS detector both at ground level and in the underground experimental cavern at the CERN LHC. Muons were detected in the momentum range from 5 GeV/c to 1 TeV/c. The surface flux ratio is measured to be 1.2766 \pm 0.0032(stat.) \pm 0.0032 (syst.), independent of the muon momentum, below 100 GeV/c. This is the most precise measurement to date. At higher momenta the data are consistent with an increase of the charge ratio, in agreement with cosmic ray shower models and compatible with previous measurements by deep-underground experiments
    corecore