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Chapter 1

Introduction

Heavy-ion fusion is a quite complex phenomenon whose study has been involving sev-
eral experimental and theoretical efforts, after large Tandem electrostatic accelerators
have been put into operation, and have allowed to produce medium-mass heavy-ion
beams with sufficient energy to overcome the Coulomb barrier in collisions with tar-
gets of nearly all elements. A specific interest in the study of the fusion dynamics
evolved in the seventies, following the awareness that fusion reactions between heavy
stable nuclei can produce exotic nuclei away from stability on the proton-rich side of
the mass valley and they are crucial for the synthesis of very heavy elements.

Measured fusion excitation functions of light heavy-ion systems essentially fol-
low the predictions of the well-known Wong formula based on the quantal penetration
of the barrier [1], but experimental and theoretical studies on near- and sub-barrier
heavy-ion fusion received a strong push in the late 70’s because two basic kinds of
experimental evidences were discovered: on one side, experimenters found the first
hints of generalised very large enhancements of cross sections with respect to the sim-
ple predictions of the Wong formula. On the other side, shortly after, measurements
gave evidence of strong isotopic effects, that is, fusion excitation functions of near-by
systems may differ substantially in magnitude and shape. This indicated that a close
connection exists between the sub-barrier fusion dynamics and the low-lying collec-
tive structure of the two colliding nuclei, and the coupled-channels (CC) model was
developed in order to reproduce the experimental evidences. In the following decade
several experiments were performed aiming at clarifying this link in various exper-
imental situations. Subsequently, Neil Rowley suggested [2] that the fusion barrier
distributions (BD) originated by channel couplings could be obtained from the second
derivative of the energy-weighted excitation functions with respect to the energy, and
a second sequence of measurements started in the early 90’s, aiming at extracting the
shape of the BD for several different systems, as a fingerprint of channel couplings
in the various cases. Measurements of this kind are very delicate and are still being
performed nowadays. Around ten years later, an experiment performed at Argonne
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Nat. Lab. [3] indicated that fusion cross sections of 60Ni + 89Y have an unexpected
behaviour far below the barrier, i.e., they drop much faster than predicted by stan-
dard CC calculations. This opened a new area of research, and this phenomenon
(named “hindrance”) was soon recognised as a general effect, even if with different
aspects whose origin is still a matter of debate and research in the community.

1.1 Physical motivation and choice of the system

The work of this thesis is based on a measurement of deep sub-barrier fusion of 58Ni
+ 64Ni.

The early experiments on fusion of Ni + Ni systems are well-known and in-
dicated for the first time the possible influence of transfer reactions on near- and
sub-barrier cross sections.

The cross sections of 58Ni + 64Ni decrease much slower with decreasing energy
below the Coulomb barrier with respect to the 64Ni + 64Ni and 58Ni + 58Ni systems.
Shortly after [4], this was associated with the availability, only in this system, of
neutron transfer channels with positive Q-values. Later measurements for 58Ni +
64Ni confirmed the shape of the excitation function, but did not extend below 0.1 mb.

In many systems (like 64Ni + 64Ni and 58Ni + 58Ni), at deep sub-barrier ener-
gies, the cross section decreases very rapidly, so that the excitation function is much
steeper than the prediction of standard coupled-channels (CC) calculations. This
phenomenon was called fusion hindrance.

The system 40Ca+96Zr has a behaviour similar to 58Ni + 64Ni, because the
slope of the sub-barrier excitation function is not so steep as for other Ca + Zr com-
binations, and this has been attributed to couplings with positive Q-value transfer
channels. The excitation function of 40Ca+96Zr has been actually measured down to
∼2µb with a regular trend of the cross sections not evidencing any sign of hindrance
effect. Misicu and Esbensen [5] proposed the so called sudden approach, where a
double folding potential is adopted (M3Y+repulsion), having a shallow pocket origi-
nating from the incompressibility of nuclear matter. This CC model has been quite
successful in reproducing the hindrance behavior in a number of cases.
The CC analyses were performed in order to better understand the influence of trans-
fer on the fusion of 40Ca+96Zr. Multi-phonon excitations were included in the coupling
scheme, and the one- and two-nucleon transfer form factors were calibrated so that
the existing data for neutron and proton transfer channels are reproduced by the CC
calculations. In this way, the sudden CC model gives an excellent account of the
fusion data.

This suggests that, since the Q-values for nucleon transfer are large and positive,
the valence nucleons can flow more freely from one nucleus to the other without being
hindered by Pauli blocking and therefore that should also occur in reactions of other
heavy-ion systems with large positive Q-values for transfer.
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The 58Ni + 64Ni system has a positive Q-value (+3.9 MeV) for 2 neutron pick-
up therefore this thesis aims to the measurement of fusion cross section of this system
down to ∼1µb to check the presence of hindrance and compare it with the symmetric
case 64Ni + 64Ni where hindrance has been clearly identified, and with the system
40Ca + 96Zr whose behaviour is similar to 64Ni + 64Ni. The possible influence of the
Pauli exclusion principle will also be discussed.
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Chapter 2

Sub-barrier fusion

2.1 Unidimensional and coupled-channel model

A first approach to the heavy-ion fusion reactions is within a unidimensional model
in which the projectile and target nuclei are treated as being structureless. Under
this condition, the potential is a function of only the relative distance r between the
colliding nuclei and it consists of two components: the nuclear potential VN(r) and
the Coulomb potential VC(r). The Coulomb potential is expressed as the electrostatic
potential between two point-like charged particles placed at a distance r:

VC(r) =
e2ZpZt
4πεr

where Zp and Zt are respectively the projectile and target atomic number. The nuclear
potential can be estimated in several ways. The ion-ion potential that has been widely
used is the phenomenological Woods-Saxon potential:

VN(r) =
−V0

1 + e(r−R0)/a0

where R0 is the radius, V0 is the depth and a0 is the diffuseness of the potential.
The three parameters of the Woods-Saxon potential can be estimated by a set of
empirical formulae obtained from the analysis of elastic scattering:

Rp = (1.2A1/3
p − 0.09)fm Rt = (1.2A

1/3
t − 0.09)fm

R0 = Rp +Rt

γ = 0.95

(
1− 1.8

Ap − 2Zp
At

At − 2Zt
Ap

)
V0 = 16πγa0

RpRt

Rp +Rt
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a0 =
1

1.17[1 + 0.53(A
−1/3
p + A

−1/3
t )]

This empirical potential is called Akyuz-Winther potential [6]. The nuclear poten-
tial constructed in this way has been successful in reproducing experimental angular
distributions of elastic and inelastic scattering for many systems.
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Figure 2.1: Unidimensional potential for the system 58Ni+64Ni: the red line represent
the Coulomb potential, the blue one the nuclear potential and the black one the total
potential.

The fusion of two spherical colliding nuclei can be described by the Schrödinger
equation, as follows: (

− h̄
2

2µ
∇2 + V (r)− E

)
Ψ(r) = 0

where µ is the reduced mass of the system and V(r) the total potential. Since the
nuclei involved are considered structureless V(r) is still the sum of the Coulomb
potential and the nuclear potential. The solution of the equation can be expanded in
terms of spherical harmonics, where the radial part obeys the following equation:(

− h̄
2

2µ

d2

dr2
+
l(l + 1)h̄2

µr2
+ V (r)− E

)
u(r) = 0

In the last equation the centrifugal repulsive potential appears.
In this model the cross section is linked to the probability that the nuclei to

overcome the barrier so that fusion may occur. Neglecting the spin, this probability
is expressed by the transmission coefficient Tl(E) relative to the energy E and the
partial wave l. The cross section is proportional to the transmission coefficient
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σl(E) = πλ̄2(2l + 1)Tl(E)

The total cross section is obtained by the sum over the partial waves, but not all the
partial waves take part in fusion process, there is a maximum value of the angular
momentum (lmax) above which fusion doesn’t occur and the two nuclei separate after
a period of contact. The fusion cross section is therefore:

σl(E) =
lmax∑

0

πλ̄2(2l + 1)Tl(E)

The transmission coefficient can be obtained approximating the Coulomb barrier with
a parabola. Within this approximation the transmission coefficient results to be:

Tl =
1

1 + e
2π
h̄ωl

(Vbl−E)

where Vbl is the height of the barrier and ωl is linked to the curvature of the parabola
for the lth wave. By assuming that the position of the barrier Rbl and ωl are inde-
pendent of the angular momentum the dependence of the transmission coefficient on
the angular momentum, can be well approximated by shifting the incident energy by
a rotational term:

Tl = T0

(
E − h̄2l(l + 1)

2µR2
b

)
Using this transmission coefficient in the cross section equation and replacing the sum
by an integral the fusion cross section results to be the Wong formula [1]:

σfus(E) =
h̄ω0Rb

2E
ln
[
1 + e

2π
h̄ω0

(E−Vb)
]

The single barrier penetration model has achieved great success in the description
of fusion cross section in light systems. On the contrary, it underestimates the sub-
barrier fusion for heavier systems, although it reproduces the experimental data above
the Coulomb barrier. This suggested that other degrees of freedom take part in the
fusion process besides the relative motion of the two nuclei, for this reason it is
necessary the coupled-channels model.

In the coupled-channels model it is necessary to consider the coupling between
the relative motion and a nuclear intrinsic motion ζ, in this way the Hamiltonian
becomes:

H(r, ζ) = H0(ζ) +Hk(r) + Vl(r) + Vint(r, ζ)

WhereHk(r) is the kinetic energy and k the wave number, Vl(r) is the ion-ion potential
for the wave l, H0(ζ) describes the internal structure of the two nuclei and Vint is the
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coupling term.
With this Hamiltonian the stationary Schrödinger equation becomes:

(
− h̄

2

2µ

d2

dr2
+
l(l + 1)h̄2

µr2
+ V (r)− E

)
Ψ(r, ζ) = − (H0(ζ) + Vint(r, ζ)) Ψ(r, ζ)

Denoting | n > as the eigenstates and εn the eigenvalues of the intrinsic Hamiltonian
H0(ζ), the function Ψ(r, ζ) can be expanded in this eigenstates:

Ψ(r, ζ) =
∑
n

χn(r) | n >

We have therefore a set of coupled differential equations and taking advantage of the
orthonormality of the base of the eigenstates | n >, it is possible to apply the bra
< m | to the equations and obtain a new set of coupled equations whose solutions are
the wave functions χn(r) of the relative motion of the two nuclei:(

− h̄
2

2µ

d2

dr2
+
l(l + 1)h̄2

µr2
+ V (r)− E

)
χm(r) = −

∑
n

Mmnχn(r)

where the coupling matrix Mmn has been defined as:

Mmn = εmδmn+ < m | Vint(r, ζ) | n >

The matrix Mmn is symmetric and can be diagonalized using some appropriate ap-
proximations [7] [8].

In heavy-ion fusion reactions the so called incoming wave boundary condition
(IWBC) is often applied. IWBC corresponds to the case where there is strong absorp-
tion within the inner region of the potential, so that the incoming flux never returns
back. Other approximations are applied to reduce the dimension of the coupling ma-
trix. In the coupled channel method, an excited state of internal spin I generates
I + 1 channels when it is coupled to the angular momentum li of the relative motion,
since each orbital angular momentum of the type l′i =| li− I |, .., | li + I | satisfies the
condition J = I + li. The so called isocentrifugal approximation reduces the number
of channels by assuming that the orbital angular momentum is the same in all reac-
tion channels, under this condition there is only one channel for each excited state
(instead of I+1). It can be also assumed that it is possible to factorize the coupling
potential in two terms which depend separately on the intrinsic and relative motions

< m | Vint(r, ζ) | n >= F (r) < m | G(ζ) | n >

Another approximation is based on supposing F (r) = F (Rb) constant where F (Rb) is
the value of F at the barrier (constant coupling approximation). This approximation
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is not used by CCFULL, the program employed in this thesis for the cross section
calculation). Under this condition the coupling matrix can be diagonalized by a
unitary matrix U :

Ym =
∑
n

Umnχn
∑
ij

UniMijUjm = δmnλm

What is obtained is a set of decoupled equations:(
− h̄

2

2µ

d2

dr2
+ V (r) + λmF − E

)
Ym(r) = 0

where the total potential for each channel becomes V (r)+λmF : in this way the single
Coulomb barrier has been replaced with a set of barriers, each one with a transmission
coefficient. The total transition coefficient can be obtained as the weighted sum of
the transmission coefficients of each barrier.

T =
∑
m

|Um1|2 T [E, V (r) + λm]

The factor Wm = |Um1|2 represents the contribution of the m-th barrier to the total
fusion cross section that is therefore expressed as the weighted sum of the cross section
of each barrier

σf =
∑
m

Wmσ
f
m

2.2 Enhancement

The coupled-channel model leads to an enhancement of the fusion cross section. To
understand how the model works a simple example with only two channel can be
considered. Assuming a constant form factor F and a Q-value Q for the coupled
channel, the coupling matrix is M =

(
0 F
F −Q

)
; then the decoupled equations for the

present case are:(
− h̄

2

2µ

d2

dr2
+ V (r)− E + λ+F

)
Y+(r) = 0

(
− h̄

2

2µ

d2

dr2
+ V (r)− E + λ−F

)
Y−(r) = 0

where λ± are the eigenvalues and Y±(r) the eigenfunctions of the diagonalized coupling
matrix. The eigenvalues of M and their weights turn out to be:

λ± =
−Q±

√
Q2 + 4F 2

2
P± =

F 2

F 2 + λ2
±

In this way the barrier splits in two barriers, one higher by an amount λ+ and one
lower by λ− than the original barrier. As shown in Fig.2.2 the transition probability
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is increased for energies lower than and reduced for energies higher than the Coulomb
barrier.

The effect of the enhancement is that of increasing the fusion cross section below

Figure 2.2: Comparison between transmission coefficient for unidimensional model
(dashed red line) and coupled-channel model (solid red line), the step function (black
line) is obtained in the classical limit

the Coulomb barrier as shown in Fig. 2.4.

2.3 Effect of transfer channel with positive Q-value

Recent studies have shown the influence of transfer processes with positive Q-value
on the fusion reactions at sub-barrier energies, where an enhancement of the cross
sections is observed with respect to the coupled channel calculations including the cou-
pling to the vibrational and rotational states. The pair-transfer between the ground
states of the interacting nuclei can be included in the coupled channel calculations
through the introduction of a macroscopic form factor [9]

Ftrans(r) = Ft
dV

(0)
N

dr

where Ft is the coupling strength. An example of this phenomenon can be found in
the 40Ca+96Zr system [10] where, as shown in Fig.2.3, the theoretical prediction un-
derestimates the experimental data and there is no indication for the fusion hindrance
effect.

2.4 Hindrance phenomenon

The experimental data of many systems (like 64Ni+64Ni) showed that, although the
coupled-channels approach resulted successfully in reproducing the excitation function
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Figure 2.3: Fusion excitation function for the 40Ca+96Zr system

for heavy ion reactions at energies above and below the barrier, the experimental
cross sections at far sub-barrier energies were overestimated. We also see that that
the theoretical prediction overestimates the data at far sub-barrier energies. This
phenomenon is called hindrance.
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Figure 2.4: Comparison between 64Ni+64Ni experimental cross sections and theoreti-
cal prediction for unidimensional model (green line), coupled-channel model involving
one phonon in the 2+ excited states (black line),one phonon in the 2+ and one in the
3− excited states (violet line) and two phonon in the 2+ excited states and one in the
3− excited states (blue line).

In order to describe the hindrance a model has been proposed by Misicu and
Esbensen in the sudden approach, that treats the nuclear density as frozen during
the collision, assuming in this way that fusion occurs rapidly. They suggest that the
incompressibility of nuclear matter becomes effective at small internuclear distances,
thus generating a repulsive core in the ion-ion potential, which is then much shallower
than standard potentials. This reduces the fusion probability. Hindrance shows up in
different ways for different systems, so that to evidence its presence the logarithmic
derivative of Eσ L(E) and the astrophysical factor S(E) are used. L(E) represents
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the slope of the excitation function

L(E) =
dln(Eσ)

dE
=

1

Eσ

d(Eσ)

dE

Where E is the energy in the center of mass of the system, L(E) increases with
decreasing energy (Fig.2.5 left). The astrophysical factor S(E) is defined as:

S(E) = Eσ(E)e2πη

where η is the Sommerfeld parameter η = 0.157ZpZt
√

µ
E

and µ is the reduced mass
of the system.

The astrophysical factor is extracted directly from the excitation function (un-
like L(E)), for this reason is a useful way to represent the trend of the excitation
function for energies far below the Coulomb barrier (Fig.2.5 right). The two quanti-
ties S(E) and L(E) are related since

dS(E)

dE
= S(E)(L− πη

E
)

therefore S(E) develops a maximum at the energy where the slope L is equal to:

LCS =
πη

E

That energy is conventionally taken as the threshold for deep sub-barrier hindrance.
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Figure 2.5: Logarithmic derivative (left) and astrophysical factor (right) for the
64Ni+64Ni system confronted with the theoretical prevision. Can be seen that the
experimental value of L(E) overcome the LCS value and S(E) present a maximum
and as consequence the excitation function present hindrance (Fig.2.4)

Moreover, in some systems (like 58Ni+64Ni) where the analysis of the S factor
does not show the presence of hindrance, this can be ascribed to the presence of
transfer channels with positive Q-value.
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Chapter 3

Set-up and experimental procedure

Figure 3.1: The Pisolo set-up

Fusion cross sections can be experimentally determined by direct detection of
evaporation residues (ER) For this experiment the electrostatic deflector PISOLO
(Fig. 3.2) has been used. This set-up has been designed to allow a fast and reliable
measurement of relative and absolute fusion cross sections. The apparatus consists
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of a reaction chamber, an electrostatic deflector and an energy, energy loss and time
of flight telescope based on micro-channel plates, an ionization chamber and a silicon
surface barrier detector.

-HV

+HV

Beam

Target

MCP1 MCP2

IC

Si-detector

Figure 3.2: Scheme of the set-up

3.1 Scattering chamber and electrostatic deflector

The reaction chamber is made of stainless steel and has a cylindrical structure with
an internal radius of 50 cm. One of its main properties is to allow a rotation keeping
the vacuum inside (10−6 mbar) by means of a sliding seal, so to perform angular
distribution measurements. Targets are fixed in a six-position holder (Fig.3.3 left)
and consisted of 50 µg/cm2 64Ni on a 20 µg/cm2 carbon backing facing the beam.
One of the positions is reserved for a quartz plate with a small central hole (1.5 mm
in diameter), used to focus the beam. The target support is attached to the upper
cover of the reaction chamber, and is moved through an external control system, so
to be able to focus the beam at each change of energy and to change the target or its
angle with respect to the beam direction.
Four 50 mm2 silicon detectors are placed at the distance of 195 mm from the target,
they are mounted on a circular support, to a detection angle of θlab = 16.05◦ with
respect to the beam line, they are shown in Fig.3.3 (right). These detectors are used
for the measurement of the Rutherford scattering cross section in order to normalize
the fusion yields and to monitor the changes in beam position on the target, usually
associated with the effects of the magnets installed on the beam line upstream of
the reaction chamber. The monitor detectors have collimators with a diameter of 1.5
mm to reduce the counting rate and consequently the radiation damage. Taking into
account that the surface of the detectors is not perpendicular to the line connecting
each of them to the target, the total calculated solid angle is ∆Ωmon=(166.7±1.7) µsr
for the four monitors.
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Figure 3.3: target holder(left) four monitor (right)

The electrostatic deflector allows the separation between the ER and the residual
beam. The deflector exploits the difference in electrical rigidity between the ER and
the particles of the transmitted beam. This rigidity is defined as η=E

q
, where E is

energy and q is the ion charge state. The deflector is placed at an angle of 4.7◦ with
respect to the beam direction. The trajectory of charged particles in the electrostatic
field region can be approximated to an arc of circumference, with radius of curvature
r given by:

mv2

r
∼ qε

where v and m are the velocity and mass of the ion respectively, while ε is transverse
electric field. Given that for the momentum conservation law the momentum of ER
and beam particles are approximately equal, the ratio between the radii of curvature
of the residues (rER) and of the beam particles (rb) is proportional to the respective
electrical rigidities.

rER
rb

=
(mv2)ER
qER

· qb
(mv2)b

∼ EER
qER

· qb
Eb
∼ mb

mER

· qb
qER

Since mass and charge state of the residues are usually greater than those of the
beam ions, the evaporation residues radius is greater than that of the beam particles.
The different trajectories allow a clear separation between the two types of particles,
also for measurements performed at 0◦. The electrostatic deflector is contained in a
stainless steel cylinder 30 cm in diameter and 85 cm in length. Inside the cylinder two
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pairs of stainless steel rectangular electrodes with smooth surface are placed. Each
electrode has dimensions of 25 cm × 12 cm and a thickness of 0.5 cm. The distance
between the plates is adjustable externally and separately for each electrode. Two
different and independent field regions are generated, which allow a good adjustment
for the different experimental conditions by minimizing the scattering of the beam on
the plates. Two high voltage power supplies bring the electrodes up to a maximum
voltage of around 40 kV and a collimator placed between the reaction chamber and
the electrostatic deflector (entrance collimator) defines the acceptance angle of the
deflector.
The applied voltage together with the geometry of the deflector plates bend slightly
the primary beam that is stopped on a side of a collimator (exit collimator) placed
at the end of the deflector. The ER, having lower electric rigidity, pass through the
collimator and reach the detection system. The applied voltage is chosen for each
energy to maximize the transmission of residues. But not all the beam particles are
stopped, in typical fusion systems the rejection factor, defined as the ratio between
the number of incoming and outgoing beam particles from the deflector, is ∼107−8,
according to the beam energy. Indeed, as a result of the scattering in the target and
the multiple collisions with the electrodes or the edges of the collimators, a fraction
of the beam particles, degraded in energy, enters the exit collimator. A further
separation of the two types of ions is therefore necessary, which is realized by the
detector telescope downstream of the exit collimator.

3.2 Detector telescope

The telescope discriminates the particles by exploiting the longer time of flight of
more massive particles with respect to lighter particles of the same kinetic energy.
This allows to distinguish the ER from the ions of the beam by measuring their TOF
and their energy E. The telescope (Fig.3.4) consists of two microchannel plates de-
tectors (MCP) [11], a ionization chamber (IC) [12] and a heavy-ion partially depleted
silicon surface barrier detector inside the IC. Before reaching the silicon detector, the
particles pass through an ionization chamber which provides their differential energy
loss. In this configuration the silicon detector measures the residual energy. The
telescope and the deflector are mounted on a platform which can be rotated in order
to perform angular distribution measurements.

In order to calculate the TOF the use of MCP allow of detecting ions without
significantly change their energy. They are based on pair of 43×63 mm2 glass plates
appropriately built to act as very compact electron multipliers with high gain (around
103 each plate). The ions do not interact directly with the plates, they pass through
a carbon foil of about 20 µg/cm2 placed perpendicularly to their direction. As result
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of the interaction of the ions with carbon delta-electrons are emitted which are subse-
quently accelerated and bent onto the plates by an electrostatic mirror placed at 45◦,
where has been applied a voltage of about 1 kV. The produced signals are vary fast
(around 2ns risetime) with a typical amplitude of tenths-hundreds of mV for heavy
ions. Each MCP detector has a transparency of 85%, due to the presence of several
grids, whereas their measured intrinsic efficiency is close to 100% for heavy ions.
The two MCPs yield the TOF together with the silicon detector, placed at the end
of the telescope, that provides the starting signal for the TOF and triggered the data
acquisition. The two flight bases are 666 mm and 1047 mm. The time resolution
of the MCP detectors is comparable to that of the Silicon detector, and overall they
sum up to around 300 ps.

Figure 3.4: Scheme of detector telescope

The last detector of the telescope is a conventional ionization chamber using a
Frisch grid shown schematically in Fig.3.5. The two parallel electrodes generate an
electric field perpendicular to the beam line. The advantage of this transverse field
ionization chamber is a fast separation of the formed ion pairs from the beam line.
In addition, the Frisch grid removes the dependence of the anode pulse amplitude on
the transverse position of the interaction. The cathode consists of one single plate
of stainless steel, whereas the anode is segmented into three parts of 8 cm, 6 cm
and 14 cm. This division of the anode allows to provide three differential energy
loss signals (∆E) which enable particle identification, however in this experiment the
three signals were combined in a single one. The pressure was chosen so that the ER
lose about half of their energy in the gas, and for this experiment has been initially
set to 40 mbar and then reduced to 35.5 mbar for lower energies. The applied voltage
chosen was 400 V in order to maximize the electron drift velocity. The gas used is
methane CH4, kept flowing during the measurements in order to assure its purity,
despite the interactions with crossing ions and the impurities that may be produced
by the walls and various components of the circuit. The gas flow also reduces the

17



recombination and assures a good energy resolution. At the end of the IC a circular
(600 mm2) silicon detector is placed, in order to measure the residual energy of the
particles.

Anodes

Frisch - Grid

Cathode

Window
Silicon

detector

Slide 
valve

Figure 3.5: Scheme of ionization chamber with Frisch grid

3.3 Electronics and acquisition system

The scheme of the electronics used for processing the signals from the monitors, MCP,
IC and Si detector is shown in Fig. 3.6. Most of the electronic chain is built up using
standard NIM modules, due to the limited number of the parameters to be acquired
and to the superior versatility of such kind of modules. The signals from each monitor
is fed to the preamplifier which gives as outputs time and energy signals. The energy
signals are connected to the inputs of a fast spectroscopy amplifier. Then, the signal
is sent to a linear gate stretcher and processed by the ADC. The time signals follow a
different way. First they are amplified with a fast amplifier and subsequently sent to a
Constant Fraction Discriminator (CFD) module. The output signals of the CFD are
sent to a gate generator and then to a logical unit, where the four monitor signals are
put in OR with the time signal of the silicon detector placed in the IC. Each MCP
provides a time signal. This signal is passed through a time pick-off pre-amplifier
and fed into the CFD. The output signals of the CFDs are delayed and used as stop
and/or start of the TAC module. Three TAC modules are currently in use providing
three time of flight signals (TOF). Each TAC is started by the signal of the detector
with lower rate, in order to prevent that the TAC receives signals not followed by
a stop. Therefore, the signals of the MCP, conveniently delayed, provide the stop
for the two TACs, measuring the time of flight between the first (second) MCP and
the silicon detector, referred to as TOF1 (TOF3). Another TAC is employed to
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measure the time of flight between the two MCP (TOF2). The signal from the silicon
detector is fed to the pre-amplifier, then the energy signal is further amplified, sent
to the linear gate stretcher and subsequently to the ADC. The time signal feeds a
fast amplifier and subsequently a CFD. Two output signals of CFD are used as start
of TOF1 and TOF3, while a third one is sent to the gate generator. The output of
this gate generator is sent in logical OR with monitors and the output of the logic
unit provides the trigger which enables the data acquisition. The ionization chamber
with transverse field provides an energy signal which passes through a pre-amplifier
and then is further amplified by a fast spectroscopy amplifier. The output feeds the
linear gate and stretcher to be finally processed by the ADC.
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Figure 3.6: Scheme of the electronic chain of the set-up
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Chapter 4

Data analysis

4.1 Experimental procedure

The experiment was designed to perform a detailed measurement of the fusion exci-
tation function for the 58Ni + 64Ni system and was run for seven days. The XTU-
Tandem accelerator provided the 58Ni beam. The target consisted of 50 µg/cm2 64Ni
on a 20 µg/cm2 carbon backing that introduced an average beam energy loss of around
1.25 – 1.31 MeV, which was taken into account in the analysis. The energies studied
follow a previous experiment of Beckerman in the range Elab=200.1 - 172.4 MeV and
then, in order to measure smaller cross sections, the range Elab=171.0 - 167.0 MeV
was studied. The 64Ni target were mounted on the six-position target holder. The
energy was gradually changed starting from the highest value, in order to minimize
hysteresis phenomena in the analyzing magnet placed at the exit of the accelerator.
At every energy change the beam was refocused on the target using a quartz.

Fusion cross sections have been determined by direct detection of the fusion
evaporation residues (ER) by separating them from the beam particles using the
electrostatic deflector. The voltage applied to the electrodes was tuned during the
experiment to maximize the number of ER detected after the deflector stage (yield
of ER). The yield measurement was performed at the highest energy (200.1 MeV)
and the maximum transmission was reached at the voltage of ±32.0 kV on each
deflector electrode. For the other beam energies the applied voltage was scaled for
the estimated electrical rigidity of the ER.

The ER were identified by a Time-of-Flight (TOF)–∆E–Energy telescope com-
posed of two micro-channel plate time detectors followed by the ionization chamber
IC and by the silicon detector placed in the same gas (CH4) volume of the IC. The
silicon detector placed at the end of the detector telescope measured the residual
energy of the ER and gave the start signal for the two TOF as well as the trigger for
the data acquisition. The whole set-up was at first placed at an angle of 1◦ respect
to the beam direction and then moved to angles of 2◦ and 1.5◦ for the lower energies,
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in order to reduce the background of beam-like particles compared to the number of
ER. Four silicon detectors placed in the reaction chamber symmetrically around the
beam direction at the same scattering angle have been used to monitor the beam and
to normalize the fusion yields to the Rutherford scattering cross section.

4.2 Total fusion cross section and excitation func-

tion

The telescope provides three times of flight TOF1 (between the first MCP and the
silicon detector),TOF2 (between the two MCP) and TOF3 (between the second MCP
and the silicon detector), a total energy loss ∆E and a residual energy E. By corre-
lating these variables, it is possible to identify the ER and estimate the total fusion
cross sections. An example of TOF3-E and TOF3-∆E matrices for different energies
can be seen in Fig. 4.1 .
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Figure 4.1: Example of TOF3-E (upper panels) and TOF3-∆E (bottom panels) spec-
tra for energies of 190.5 MeV, above the Coulomb barrier, (left) and of 171.0 Mev
(right).

When the energy is far below the barrier, the number of ER compared to back-
ground events decreases rapidly. The identification of ER becomes therefore more
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difficult and it is necessary to apply software conditions in order to remove the back-
ground, identifying the ER by using the various independent parameters (two TOF,
∆E and E) that are measured.

The four silicon detectors placed inside the reaction chamber detected the beam
ions which scattered on the target, at an angle of 16.05◦ with respect to the beam
direction. Examples of the spectra provided by the four monitors at the energy of
171.0 MeV are shown in the Fig. 4.2. These spectra allow to estimate the Rutherford
cross section, which is used to normalize the fusion cross section. This normalization
allows to correct also for the variations of beam parameters that may change during
long data acquisitions.

co
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ts
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ts

E (a.u.) E (a.u.)

Figure 4.2: Examples of the spectra provided by the four monitors for the energy of
171.0 MeV

The ER angular distribution was also measured at the Elab=190.5 MeV in order
to obtain the total fusion cross section. The differential cross section can be obtained
from the ER and monitors count by this formula:

dσf

dΩ
(E, θ) =

dσRuth

dΩ
(E, θlab)

NER

Nmon

∆Ωmon

∆ΩER

1

ε

where, Nmon is the number of elastic scattering events detected by the monitors,
∆Ωmon is the total solid angle subtended by them and θlab is the monitor angle
16.05◦. NER is the number of ER counted by the silicon detector and ∆ΩER is
its solid angle. The quantity ε can be explicitly expressed as the product of the
deflector transmission T=0.74±0.03 and the telescope transparency. The value of T
was estimated on the basis of an interpolation between the transmissions determined
in past years for several different systems. T does not essentially depend on the
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energy, however it is a function of the mass asymmetry of the system under study.
The total fusion cross section for each energy can be obtained by the formula

σf = K(E)
dσf

dΩ
(E, θ)

where the parameter K(E) is a quantity weakly dependent on the energy and can be

extracted from the angular distribution. However since dσRuth

dΩ
(E, θlab) = A(θlab)

1
E2 ,

with θlab fixed, and K(E)=K constant the quantity NER
NRuth

1
E2 is proportional to the

fusion cross-section with the same constant for each energy, therefore this quantity
can be normalized to the cross section measured in a previous experiment for the
same system [13] for the highest energy and then obtain the total fusion cross section
at all measured energies. The obtained values are reported in the Table 4.1, and
compared with the Beckerman’s data (Fig. 4.3)
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Figure 4.3: Comparison between excitation function obtained in this experiment and
in the Beckerman experiment for the system 58Ni + 64Ni

Only the statistical uncertainties were considered and the distribution of the
particles counts is Poissonian so that the associated uncertainty is

√
N . The cross

sections vary of five orders of magnitude in the energy range considered for the mea-
surements.

4.3 Astrophysical S-factor and logarithmic slope

A first approach to verify the presence of hindrance consists in the calculation of the
Logarithmic derivative L(E) and the Astrophysical S factor S(E). The definition of
the logarithmic derivative is

L(E) =
dln(Eσ)

dE
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ECM σf ∆ σf

104.31 166 2
99.26 75.3 1.4
94.59 15.6 0.2
92.28 3.50 0.10
90.75 0.77 0.05
89.76 0.12 0.02
89.02 0.06 0.01
88.50 0.03 0.01
87.97 0.010 0.003
87.44 0.0032 0.0010
86.92 0.0013 0.0009

Table 4.1: Cross sections measured in this experiment for the system 58Ni + 64Ni, the
quoted errors are statistical uncertainties (see text)

that can be obtained from the experimental data using the incremental ratio:

L(E) =
ln(E2σ2)− ln(E1σ1)

E2 − E1

The statistical uncertainty associated with the logarithmic derivative is estimated as
the propagation of the statistical uncertainty of the cross section. The results are
shown in Fig. 4.4 where the value of LCS = πη

E
is also plotted.

From this plot it can be seen that the experimental value of L(E) is always
below the LCS value, so that no maximum for the astrophysical S factor is expected.

Also the astrophysical S factor has been calculated from the cross section values
by the formula:

S(E) = Eσ(E)e2π(η−η0)

The value η0 is used as a normalization factor to obtain S(E) in a reasonable range of
values.In this case η0 = 69.3 has been used. As for the logarithmic derivative the sta-
tistical uncertainty for S(E) is estimated by propagating the statistical errors on the
cross sections. The results are shown in Fig. 4.5. It can be seen that there is no max-
imum for S(E), as expected from the trend of L(E). The behavior of the logarithmic
derivative and the astrophysical factor is a first evidence of the absence of hindrance
in the 58Ni + 64Ni system. However to correctly understand the experimental results,
a theoretical interpretation is necessary. In this thesis a coupled-channels analysis
was performed using the CCFULL code.
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Figure 4.4: Logarithmic derivative for the system 58Ni + 64Ni. the LCS line is defined
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Chapter 5

Comparison with CC calculations

The experimental data of the fusion reactions have been compared to the theoretical
calculations based on the coupled-channels model. The comparison is of great impor-
tance from a structural point of view, in order to verify the effect of the excited states
involved in the fusion dynamics. The CC calculations were performed by means of
the CCFULL code [14], which solves the coupled equations by employing the isocen-
trifugal approximation and the incoming wave boundary condition. The energies of
the excited states of both target and projectile nuclei, as well as the associated de-
formation parameters, are given in Table 5.1. The deformation parameters for each
state has been obtained from the literature [15] [16]. The parameters obtained for
the Akyüz-Winther potential are reported in Table 5.2.

Nucleus E(MeV) λπ βλ
58Ni 1.454 2+ 0.18

4.475 3− 0.20
64Ni 1.346 2+ 0.18

3.560 3− 0.19

Table 5.1: Nuclear structure parameters for CCFULL calculations

V0 (MeV) r0 (fm) a0 (fm) Vb (Mev) Rb (fm)

73.87 1.18 0.67 97.6 10.75

Table 5.2: Well depth V0, radius r0 and diffusivity a0 of the Akyüz-Winther potential
and the resulting height Vb, and the position Rb of the Coulomb barrier for the system
58Ni+64Ni.
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5.1 CC prediction and the effect of the transfer

channel couplings

The resulting fusion cross section overestimate the experimental data (Fig. 5.1 left)
above the Coulomb barrier. This effect may be caused by an underestimation of the
Coulomb barrier by the Akyüz-Winther potential. In order to correct for this effect
the barrier height has been modified to Vb=99.3 MeV, and following this modification
the the well depth of the nuclear potential has to be V0=138.0 MeV and the radius
is r0=1.10 fm, with the same a0=0.67 fm.
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Figure 5.1: CC calculation of the excitation function for the system 58Ni + 64Ni with
Akyüz-Winther potential (left panel). CC calculation of the excitation function for
the system 58Ni + 64Ni with a modified Akyüz-Winther potential (right panel).

The resulting calculation is shown in Fig. 5.1 right, the couplings lead to a
large enhancement of the fusion below the barrier with respect to the no coupling
limit, but the result still underestimates the cross sections at low energies, so that
there is no evidence of hindrance for this system. This effect may be attributed to
the presence of neutron transfer channels with positive Q-value. The CCFULL code
allows to include the pair-transfer between the ground states of the interacting nuclei
through the schematic form factor

Ftrans(r) = Ft
dV

(0)
N

dr

The Q-value for this reaction is Q=3.89 MeV, the coupling strength Ft best fitting
the data is Ft=0.6 MeV. With the introduction of the transfer channel the resulting
fusion cross section underestimates the experimental data above the Coulomb barrier,
so the barrier height has been further modified to Vb=98.63 MeV (V0=151.85 MeV,
r0=1.10 fm and a0=0.67 fm). The results including both the inelastic and transfer
couplings are in good agreement with the experimental data as shown in Fig. 5.2.
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Figure 5.2: CC calculations of the excitation function for the system 58Ni + 64Ni
taking in to account also the transfer channel.

Also the logarithmic derivative (Fig. 5.3) and the astrophysical S factor (Fig.
5.4) has been calculated. As expected the experimental value of the logarithmic
derivative remains always lower than the LCS line and consequently there is no max-
imum for the astrophysical S factor.

The fusion Q-value for this system is negative, then the cross section for energies
lower than the E=-Q have to be zero. For this reason the astrophysical S factor has
to develop a maximum at some energy above -Q. However the presence of the transfer
channels results in a shift of the onset of the hindrance effect towards low energies.
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Figure 5.3: CC calculations of the logarithmic derivative for the system 58Ni + 64Ni.
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Figure 5.4: CC calculations of the astrophysical S factor for the system 58Ni + 64Ni.
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5.2 Behavior of near-by system: 64Ni+64Ni

The behavior of the 64Ni+64Ni system has been also studied using the Jiang exper-
imental data and performing the CC calculation using a modified Akyüz-Winther
potential (V0=127.92 MeV, r0=1.12 fm and a0=0.68 fm). The results obtained are
shown in Fig. 5.5 where can be seen that the theoretical prediction overestimate the
experimental data, so there is evidence of hindrance effect.
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Figure 5.5: CC calculations of the excitation function for the system 64Ni + 64Ni

Also the logarithmic derivative (Fig. 5.6) and the astrophysical S factor (Fig.
5.7) have been obtained. The slope for this system keeps increasing, reaches and
overcomes the value LCS. Consequently, a S maximum develops with decreasing
energy.
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Figure 5.6: CC calculations of the logarithmic derivative for the system 64Ni + 64Ni
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Figure 5.7: CC calculations of the astrophysical S factor for the system 64Ni + 64Ni
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A comparison of the excitation function of the 58Ni + 64Ni and the 64Ni + 64Ni
systems was made as shown in Fig. 5.8 where the cross sections are plotted in a
reduced energy scale (E/Vb) so to correct for the different Coulomb barriers of the
two systems.
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Figure 5.8: Comparison of the excitation function between the 58Ni + 64Ni and the
64Ni + 64Ni systems.

The logarithmic derivative (Fig. 5.9) and the astrophysical S factor (Fig. 5.10)
have also been compared between the two systems.

In these plots we can see their different behavior for energies below the Coulomb
barrier.
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Figure 5.10: Comparison of the astrophysical S factor between the 58Ni + 64Ni and
the 64Ni + 64Ni systems.
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5.3 Another similar case: 96Zr+40Ca

Another similar case to 58Ni + 64Ni is the 40Ca+96Zr system which also presents
transfer channels with positive Q-value. Also in this case the CC calculations under-
estimate the obtained cross-section below the the Coulomb barrier as shown in Fig.
5.11 (left).

Figure 5.11: Excitation function for the 40Ca + 96Zr (left panel), Logarithmic deriva-
tive for 40Ca + 96Zr and theoretical prediction for unidimensional model (black dashed
line), coupled-channel model involving one phonon of the 2+ excited states (green
dashed line),one phonon of the 2+ and one of the 3− excited states (blue dashed line)
and two phonon of the 2+ excited states and one of the 3− excited states (red line)
(right panel).

The CC calculations including the neutron transfer channels reproduce well the
experimental data down to the lowest measured energies.

Also the logarithmic derivative (Fig. 5.11(right)) has been calculated where
we can see that, as expected, the slope increases slowly and remains very low with
respect to the constant S factor value.
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Chapter 6

Summary and conclusion

In conclusion, in this thesis work the fusion reaction 58Ni+64Ni has been investigated
by performing an experiment at XTU Tandem of Laboratori Nazionali di Legnaro.
The set up using an electrostatic deflector and a detector telescope, for the separation
of the fusion evaporation products from the beam particles, has been employed. In
this way fusion cross sections have been measured in a wide energy range from above
down to far below the barrier reaching a minimum cross section of about 1µb. The
data have been compared with the CC calculations, showing that the theoretical
predictions including two phonon of the 2+ state and one of the 3− state strongly
underestimate the experimental cross section below the Coulomb barrier and there is
a clear need for additional couplings. Including also the two neutron transfer channels
the theoretical prediction is in good agreement with the experimental data. The
logarithmic derivative and the astrophysical S factor have been extracted from the
data. The logarithmic slope increases slowly and doesn’t reach the constant S factor
value, so that there no evidence for the hindrance phenomenon. This shows how the
presence of neutron transfer channels with positive Q-value enhances the fusion cross
section at low energies. What we have seen is similar to the case of 40Ca + 96Zr where
the transfer channels with positive Q-value are also present. The obtained results has
been compared with the 64Ni+64Ni system that presents a similar nuclear structure
but doesn’t have transfer channels with positive Q-value, and in this system the
hindrance effect is observed. The behaviour of 58Ni+64Ni at deep sub-barrier energies
is a strong experimental evidence of the validity of the recent suggestion that the
availability of several states following transfer with Q>0, effectively counterbalances
the repulsion caused by the Pauli exclusion principle [17].
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Chapter 7

Appendix: Table of experimental
data

Angle NER
NmonE2 ∆ NER

NmonE2

1◦ 10.3 0.3
1.5◦ 8.0 0.3
2◦ 5.04 0.3
3◦ 1.54 0.7

Table 7.1: Angular distribution data at the energy of 190.5 MeV.

ECM (Mev) L(E) (MeV−1) ∆ L(E) (MeV−1)

98.3 0.331 0.003
95.01 0.549 0.008
92.18 1.01 0.03
90.65 1.27 0.07
89.63 1.5 0.2
88.86 1.4 0.2
88.23 1.8 0.2
87.71 1.9 0.5

Table 7.2: Logarithmic derivative obtained from experimental data.
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ECM (Mev) S(E) (MeV mb) ∆ S(E) (MeV mb)

99.26 5.5 0.1
94.59 3.70 104 5 102

92.28 1.94 106 5 104

90.75 1.7 107 1 106

89.76 3.2 107 5 106

89.02 1.0 108 2 107

88.50 1.8 108 6 107

87.71 2.5 108 9 107

87.44 3.1 108 9 107

86.92 5 108 3 108

Table 7.3: Astrophysical S factor obtained from experimental excitation function
using the scale factor e2πη0 where η0=69.3 (see text).
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