2,113 research outputs found

    Evaluation of Monilinia fructicola on apricot fruits

    Get PDF
    Monilinia fructicola has been a quarantine pathogen in Europe until 2014; however, the disease risk remains large for Prunus species, because of the continuing spreading around Europe. In order to assess the impact of this fungus on apricot fruits, differences in variety susceptibility need to be evaluated

    Different methods of evaluation of Monilinia laxa on apricot flowers and branches

    Get PDF
    - Organic apricot production is currently not profitable. - The main obstacle to sustainable profitability is brown rot caused by the fungus Monilinia laxa (Aderh. & Ruhl). - In the current apricot germplasm no source of total resistance has been shown, but some varieties are expressing interesting levels of tolerance. - A good evaluation of the M. laxa symptoms is essential for a precise diagnosis of the infection and to appreciate differences between tolerant and susceptible varieties and genotypes

    A Proposal for Nomenclature in Myeloid C-Type Lectin Receptors

    Get PDF
    Myeloid C-type lectin receptors (CLRs) comprise a family of receptors expressed by immune myeloid cells that share homologous C-type lectin domains. The implication of these CLRs in the regulation of homeostasis and activation of myeloid cells has generated a buoyant growth in the number of studies involving these receptors. Since their first description, diverse nomenclature has been used to refer to each of them, ranging from systematic classifications, such as gene name or cluster of differentiation, to non-systematic ones that include terminology based on gene expression patterns or function. In this review, we aim to summarize the different names used for the main myeloidCLRs and analyzewhich of themhave beenmore frequently used in the literature. In addition, we have examined the evolution of the terminology applied to these myeloid CLRs over time. Based on this analysis, we propose a consensus alias for each of those myeloid CLRs. However, we acknowledge that systematicity is required beyond this terminology based on use frequency. Therefore, we have included gene names as the standardization tool to gather the maximum agreement. We suggest that a standard nomenclature consisting of both gene names and consensus alias should be included at least in scientific abstracts, which would help to identify relevant literature, saving time and effort and fostering the research in this field in a more systematic manner.CF was supported by AECC Foundation (INVES192DELF). Work in the DS laboratory was funded by the CNIC and grant SAF2016-79040-R from Ministerio de Ciencia, Innovacion e Universidades (MCIU), Agencia Estatal de Investigacion and Fondo Europeo de Desarrollo Regional (FEDER); B2017/BMD-3733 Immunothercan-CM from Comunidad de Madrid; RD16/0015/0018-REEM from FIS-Instituto de Salud Carlos III, MICINN, and FEDER; Acteria Foundation; Constantes y Vitales prize (Atresmedia); La Marato de TV3 Foundation (201723); the European Research Council (ERC-2016-Consolidator Grant 725091); and the European Commission (635122-PROCROP H2020). The CNIC is supported by the MCIU and the Pro-CNIC Foundation, and is a Severo Ochoa Center of Excellence (SEV-2015-0505).S

    Petrograhic features and physical properties of certain travertine building stones

    Get PDF
    Depto. de Mineralogía y PetrologíaFac. de Ciencias GeológicasTRUEMinisterio de Educación y Ciencia (MEC)pu

    Study of hard double-parton scattering in four-jet events in pp collisions at √s = 7 TeV with the ATLAS experiment

    Full text link
    Journal of High Energy Physics 2016.11 (2016): 110 reproduced by permission of Scuola Internazionale Superiore di Studi Avanzati (SISSA)Artículo escrito por muchos autores, sólo se referencian el que aparece en primer lugar, el nombre del grupo de colaboración y los autores que firman como pertenecientes a la UAMInclusive four-jet events produced in proton-proton collisions at a centre-ofmass energy of √ s = 7 TeV are analysed for the presence of hard double-parton scattering using data corresponding to an integrated luminosity of 37.3 pb−1 , collected with the ATLAS detector at the LHC. The contribution of hard double-parton scattering to the production of four-jet events is extracted using an artificial neural network, assuming that hard double-parton scattering can be approximated by an uncorrelated overlaying of dijet events. For events containing at least four jets with transverse momentum pT ≥ 20 GeV and pseudorapidity |η| ≤ 4.4, and at least one having pT ≥ 42.5 GeV, the contribution of hard double-parton scattering is estimated to be fDPS = 0.092 +0.005 −0.011 (stat.) +0.033 −0.037 (syst.). After combining this measurement with those of the inclusive dijet and four-jet cross-sections in the appropriate phase space regions, the effective cross-section, σeff, was determined to be σeff = 14.9 +1.2 −1.0 (stat.) +5.1 −3.8 (syst.) mb. This result is consistent within the quoted uncertainties with previous measurements of σeff, performed at centre-of-mass energies between 63 GeV and 8 TeV using various final states, and it corresponds to 21+7 −6% of the total inelastic cross-section measured at √ s = 7 TeV. The distributions of the observables sensitive to the contribution of hard double-parton scattering, corrected for detector effects, are also providedWe acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, FP7, Horizon 2020 and Marie Sklodowska- Curie Actions, European Union; Investissements d’Avenir Labex and Idex, ANR, Région Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes cofinanced by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; Generalitat de Catalunya, Generalitat Valenciana, Spain; the Royal Society and Leverhulme Trust, United Kingdo

    Understanding the rotational excitation in scattering of D2 from CH3-Si(111)

    Full text link
    We have studied the origin of the striking rotational excitation probability, found experimentally, for D2 upon scattering from a organic-terminated Si(111) surfac
    corecore