71 research outputs found

    Congenital rhabdomyosarcoma: a different clinical presentation in two cases

    Get PDF
    Background: Rhabdomyosarcoma (RMS), one of the most common soft tissue sarcomas of childhood, is very rare in the neonatal period (0.4-2% of cases). In order to gain a deeper understanding of this disease at such age, patient and tumor features, as well as treatment modality and outcome need to be reported. Case presentation: We describe two cases with congenital RMS treated at Bambino Gesù Children's Hospital between 2000 and 2016. They represent only 2.24% of all RMS patients diagnosed during that period in our Institution; this data is in agreement with the incidence reported in the literature. They reflect the two different clinical forms in which the disease may manifest itself. One patient, with the alveolar subtype (positive for specific PAX3-FOXO1 fusion transcript) and disseminated disease, had a fatal outcome with central nervous system (CNS) progression despite conventional and high dose chemotherapy. The other child, with the localized embryonal subtype, was treated successfully with conservative surgery and conventional chemotherapy, including prolonged maintenance therapy. He is disease free at 7 years of follow-up. Conclusions: RMS can also be diagnosed during the neonatal period. Given the young age, disease management is often challenging, and especially for the alveolar subtype, the outcome is dismal despite intensified multimodality therapy. In fact, it characteristically manifests with multiple subcutaneous nodules and progression most commonly occurs in the CNS (Rodriguez-Galindo et al., Cancer 92(6):1613-20, 2001). In this context, CNS prophylaxis could play a role in preventing leptomeningeal dissemination, and molecular studies can allow a deeper tumor characterization, treatment stratification and identification of new potential therapeutic targets

    Pharmacological targeting of CBP/p300 drives a redox/autophagy axis leading to senescence-induced growth arrest in non-small cell lung cancer cells

    Get PDF
    p300/CBP histone acetyltransferases (HAT) are critical transcription coactivators involved in multiple cellular activities. They act at multiple levels in non-small cell lung carcinoma (NSCLC) and appear, therefore, as promising druggable targets. Herein, we investigated the biological effects of A-485, the first selective (potent) drug-like HAT catalytic inhibitor of p300/CBP, in human NSCLC cell lines. A-485 treatment specifically reduced p300/CBP-mediated histone acetylation marks and caused growth arrest of lung cancer cells via activation of the autophagic pathway. Indeed, A-485 growth-arrested cells displayed phenotypic markers of cell senescence and failed to form colonies. Notably, disruption of autophagy by genetic and pharmacological approaches triggered apoptotic cell death. Mechanistically, A-485-induced senescence occurred through the accumulation of reactive oxygen species (ROS), which in turn resulted in DNA damage and activation of the autophagic pathway. Interestingly, ROS scavengers were able to revert senescence phenotype and restore cell viability, suggesting that ROS production had a key role in upstream events leading to growth arrest commitment. Altogether, our data provide new insights into the biological effects of the A-485 and uncover the importance of the autophagic/apoptotic response to design a new combinatorial anticancer strategy

    The peculiar challenge of bringing CAR-T cells into the brain: Perspectives in the clinical application to the treatment of pediatric central nervous system tumors

    Get PDF
    Childhood malignant brain tumors remain a significant cause of death in the pediatric population, despite the use of aggressive multimodal treatments. New therapeutic approaches are urgently needed for these patients in order to improve prognosis, while reducing side effects and long-term sequelae of the treatment. Immunotherapy is an attractive option and, in particular, the use of gene-modified T cells expressing a chimeric antigen receptor (CAR-T cells) represents a promising approach. Major hurdles in the clinical application of this approach in neuro-oncology, however, exist. The peculiar location of brain tumors leads to both a difficulty of access to the tumor mass, shielded by the blood-brain barrier (BBB), and to an increased risk of potentially life-threatening neurotoxicity, due to the primary location of the disease in the CNS and the low intracranial volume reserve. There are no unequivocal data on the best way of CAR-T cell administration. Multiple trials exploring the use of CD19 CAR-T cells for hematologic malignancies proved that genetically engineered T cells can cross the BBB, suggesting that systemically administered CAR-T cell can be used in the neuro-oncology setting. Intrathecal and intra-tumoral delivery can be easily managed with local implantable devices, suitable also for a more precise neuro-monitoring. The identification of specific approaches of neuro-monitoring is of utmost importance in these patients. In the present review, we highlight the most relevant potential challenges associated with the application of CAR-T cell therapy in pediatric brain cancers, focusing on the evaluation of the best route of delivery, the peculiar risk of neurotoxicity and the related neuro-monitoring

    Melanoma-specific bcl-2 promotes a protumoral M2-like phenotype by tumor-associated macrophages

    Get PDF
    BackgroundA bidirectional crosstalk between tumor cells and the surrounding microenvironment contributes to tumor progression and response to therapy. Our previous studies have demonstrated that bcl-2 affects melanoma progression and regulates the tumor microenvironment. The aim of this study was to evaluate whether bcl-2 expression in melanoma cells could influence tumor-promoting functions of tumor-associated macrophages, a major constituent of the tumor microenvironment that affects anticancer immunity favoring tumor progression.MethodsTHP-1 monocytic cells, monocyte-derived macrophages and melanoma cells expressing different levels of bcl-2 protein were used. ELISA, qRT-PCR and Western blot analyses were used to evaluate macrophage polarization markers and protein expression levels. Chromatin immunoprecipitation assay was performed to evaluate transcription factor recruitment at specific promoters. Boyden chamber was used for migration experiments. Cytofluorimetric and immunohistochemical analyses were carried out to evaluate infiltrating macrophages and T cells in melanoma specimens from patients or mice.ResultsHigher production of tumor-promoting and chemotactic factors, and M2-polarized activation was observed when macrophages were exposed to culture media from melanoma cells overexpressing bcl-2, while bcl-2 silencing in melanoma cells inhibited the M2 macrophage polarization. In agreement, the number of melanoma-infiltrating macrophages in vivo was increased, in parallel with a greater expression of bcl-2 in tumor cells. Tumor-derived interleukin-1β has been identified as the effector cytokine of bcl-2-dependent macrophage reprogramming, according to reduced tumor growth, decreased number of M2-polarized tumor-associated macrophages and increased number of infiltrating CD4+IFNγ+and CD8+IFNγ+effector T lymphocytes, which we observed in response to in vivo treatment with the IL-1 receptor antagonist kineret. Finally, in tumor specimens from patients with melanoma, high bcl-2 expression correlated with increased infiltration of M2-polarized CD163+macrophages, hence supporting the clinical relevance of the crosstalk between tumor cells and microenvironment.ConclusionsTaken together, our results show that melanoma-specific bcl-2 controls an IL-1β-driven axis of macrophage diversion that establishes tumor microenvironmental conditions favoring melanoma development. Interfering with this pathway might provide novel therapeutic strategies

    Vemurafenib Treatment of Pleomorphic Xanthoastrocytoma in a Child With Down Syndrome

    Get PDF
    Brain tumors are the most common solid neoplasms of childhood, but they are very rarely reported in children with Down Syndrome (DS), who develop more commonly different types of malignancies. In particular, we hereby report the case of an 8-years-old child with DS that presented to our attention for neurological and endocrinological issues. Brain imaging revealed the presence of a mass that was partially resected revealing a histological diagnosis of Pleomorphic Xanthoastrocytoma (PXA), a rare WHO grade II tumor extending from the diencephalic region into the surrounding brain tissue. These tumors can harbor the BRAF mutation p.V600E, targetable by the specific inhibitor Vemurafenib. After confirming the presence of the mutation in the tumor, the patient was treated with Vemurafenib. The treatment proved to be effective, leading to a partial response and a stabilization of the disease. Usually, in patients with DS a reduction of the dose of chemotherapeutic drugs is necessary. Vemurafenib was instead well-tolerated as the only observed adverse effect was grade I skin toxicity. This is, to our knowledge, the first case of a PXA reported in a child with DS and the first DS patient treated with Vemurafenib

    Epigenetic Profiling and Response to CD19 Chimeric Antigen Receptor T-Cell Therapy in B-Cell Malignancies

    Get PDF
    Background: Chimeric antigen receptor (CAR) T cells directed against CD19 (CART19) are effective in B-cell malignancies, but little is known about the molecular factors predicting clinical outcome of CART19 therapy. The increasingly recognized relevance of epigenetic changes in cancer immunology prompted us to determine the impact of the DNA methylation profiles of CART19 cells on the clinical course. Methods: We recruited 114 patients with B-cell malignancies, comprising 77 patients with acute lymphoblastic leukemia and 37 patients with non-Hodgkin lymphoma who were treated with CART19 cells. Using a comprehensive DNA methylation microarray, we determined the epigenomic changes that occur in the patient T cells upon transduction of the CAR vector. The effects of the identified DNA methylation sites on clinical response, cytokine release syndrome, immune effector cell-associated neurotoxicity syndrome, event-free survival, and overall survival were assessed. All statistical tests were 2-sided. Results: We identified 984 genomic sites with differential DNA methylation between CAR-untransduced and CAR-transduced T cells before infusion into the patient. Eighteen of these distinct epigenetic loci were associated with complete response (CR), adjusting by multiple testing. Using the sites linked to CR, an epigenetic signature, referred to hereafter as the EPICART signature, was established in the initial discovery cohort (n = 79), which was associated with CR (Fisher exact test, P < .001) and enhanced event-free survival (hazard ratio [HR] = 0.36; 95% confidence interval [CI] = 0.19 to 0.70; P = .002; log-rank P = .003) and overall survival (HR = 0.45; 95% CI = 0.20 to 0.99; P = .047; log-rank P = .04;). Most important, the EPICART profile maintained its clinical course predictive value in the validation cohort (n = 35), where it was associated with CR (Fisher exact test, P < .001) and enhanced overall survival (HR = 0.31; 95% CI = 0.11 to 0.84; P = .02; log-rank P = .02). Conclusions: We show that the DNA methylation landscape of patient CART19 cells influences the efficacy of the cellular immunotherapy treatment in patients with B-cell malignancy.Supported by CERCA Programme/Generalitat de Catalunya, Health Department PERIS #SLT/002/16/00374, AGAUR-project #2017SGR1080; MCI/AEI/ERDF project #RTI2018-094049-B-I00; ERC EPIPHARM; Cellex Foundation; “la Caixa” Foundation (LCF/PR/GN18/51140001 and LCF/PR/GN18/50310007), RF-2016–02364388, Accelerator Award—Cancer Research UK/AIRC—INCAR Associazione Italiana Ricerca per la Ricerca sul Cancro (AIRC) Project 5 × 1000 no. 9962, AIRC IG 2018 id. 21724, AIRC MFAG id. 21769 and id. 20450; MIUR (Grant PRIN 2017); and RCR-2019–23669115

    Multiple mechanisms determine the sensitivity of human-induced pluripotent stem cells to the inducible caspase-9 safety switch

    No full text
    Expression of the inducible caspase-9 (iC9) suicide gene is one of the most appealing safety strategies for cell therapy and has been applied for human-induced pluripotent stem cells (hiPSC) to control the cell fate of hiPSC. iC9 can induce cell death of over 99% of iC9-transduced hiPSC (iC9-hiPSC) in less than 24 hours after exposure to chemical inducer of dimerization (CID). There is, however, a small number of resistant cells that subsequently outgrows. To ensure greater uniformity of the hiPSC response to iC9 activation, we purified a resistant population by culturing iC9-hiPSC with CID and analyzing the mechanisms by which the cells evade killing. We found that iC9-resistant hiPSC have significant heterogeneity in terms of their escape mechanisms from caspase-dependent apoptosis including reduced expression of iC9 by promoter silencing and overexpression of BCL2. As a consequence, modifying a single element alone will be insufficient to ensure sustained susceptibility of iC9 in all cells and prevent the eventual outgrowth of a resistant population. To solve this issue, we propose to isolate an iC9-sensitive population and show that this hiPSC line has sustained a uniform responsiveness to iC9-mediated growth control

    Nephrotic Syndrome Following H1N1 Influenza in a 3-Year-Old Boy

    Get PDF
    Background: The pandemic influenza A/H1N1, spread through the world in 2009, producing a serious epidemic in Italy. Complications are generally limited to patients at the extremes of age (<6 months or >65 years) and those with comorbid medical illness. The most frequent complications of influenza involve the respiratory system. Case Presentation: A 3-year-old boy with a recent history of upper respiratory tract infection developed a nephrotic syndrome. Together with prednisone, furosemide and albumin bolus, a therapy with oseltamivir was started since the nasopharyngeal swab resulted positive for influenza A/H1N1. Clinical conditions and laboratory findings progressively improved during hospitalization, becoming normal during a 2 month follow up. Conclusion: The possibility of a renal involvement after influenza A/H1N1 infection should be considered

    Developing cell therapies as drug products

    No full text
    In the last 20 years, the global regulatory frameworks for drug assessment have been managing the challenges posed by using cellular products as new therapeutic tools. Currently, they are defined as "Advanced Therapy Medicinal Products", comprising a large group of cellular types that either alone or in combination with gene and tissue engineering technology. They have the potential to change the natural course of still lethal or highly debilitating diseases, including cancers, opportunistic infections and chronic inflammatory conditions. Globally, more than 50 cell-based products have obtained market authorization. This overview describes the advantages and unsolved challenges on developing cells as innovative therapeutic vehicles. The main cell therapy players and the legal framework are discussed, starting from chimeric antigen receptor T-cells for leukaemia and solid tumours, dealing then with lymphocytes as potent anti-microbiological tools and then focusing on mesenchymal stem/stromal cells whose role covers regenerative medicine, immunology and anti-tumour therapy

    Manipulating the metabolism to improve the efficacy of CAR T-cell immunotherapy

    No full text
    The adoptive transfer of the chimeric antigen receptor (CAR) expressing T-cells has produced unprecedented successful results in the treatment of B-cell malignancies. However, the use of this technology in other malignancies remains less effective. In the setting of solid neoplasms, CAR T-cell metabolic fitness needs to be optimal to reach the tumor and execute their cytolytic function in an environment often hostile. It is now well established that both tumor and T cell metabolisms play critical roles in controlling the immune response by conditioning the tumor microenvironment and the fate and activity of the T cells. In this review, after a brief description of the tumoral and T cell metabolic reprogramming, we summarize the latest advances and new strategies that have been developed to improve the metabolic fitness and efficacy of CAR T-cell products
    corecore