441 research outputs found

    Learning to Play Bayesian Games

    Get PDF
    This paper discusses the implications of learning theory for the analysis of Bayesian games. One goal is to illuminate the issues that arise when modeling situations where players are learning about the distribution of Nature's move as well as learning about the opponents' strategies. A second goal is to argue that quite restrictive assumptions are necessary to justify the concept of Nash equilibrium without a common prior as a steady state of a learning process.

    Two Conditions for Galaxy Quenching: Compact Centres and Massive Haloes

    Full text link
    We investigate the roles of two classes of quenching mechanisms for central and satellite galaxies in the SDSS (z<0.075z<0.075): those involving the halo and those involving the formation of a compact centre. For central galaxies with inner compactness Σ1kpc1099.4Mkpc2\Sigma_{\rm 1kpc} \sim 10^{9-9.4}M_{\odot} {\rm kpc}^{-2}, the quenched fraction fqf_{q} is strongly correlated with Σ1kpc\Sigma_{\rm 1kpc} with only weak halo mass MhM_{\rm h} dependence. However, at higher and lower Σ1kpc\Sigma_{\rm 1kpc}, sSFR is a strong function of MhM_{\rm h} and mostly independent of Σ1kpc\Sigma_{\rm 1kpc}. In other words, Σ1kpc1099.4Mkpc2\Sigma_{\rm 1kpc} \sim 10^{9-9.4} M_{\odot} {\rm kpc}^{-2} divides galaxies into those with high sSFR below and low sSFR above this range. In both the upper and lower regimes, increasing MhM_{\rm h} shifts the entire sSFR distribtuion to lower sSFR without a qualitative change in shape. This is true even at fixed MM_{*}, but varying MM_{*} at fixed MhM_{\rm h} adds no quenching information. Most of the quenched centrals with Mh>1011.8MM_{\rm h} > 10^{11.8}M_{\odot} are dense (Σ1kpc>109 Mkpc2\Sigma_{\rm 1kpc} > 10^{9}~ M_{\odot} {\rm kpc}^{-2}), suggesting compaction-related quenching maintained by halo-related quenching. However, 21% are diffuse, indicating only halo quenching. For satellite galaxies in the outskirts of halos, quenching is a strong function of compactness and a weak function of host MhM_{\rm h}. In the inner halo, MhM_{\rm h} dominates quenching, with 90%\sim 90\% of the satellites being quenched once Mh>1013MM_{\rm h} > 10^{13}M_{\odot}. This regional effect is greatest for the least massive satellites. As demonstrated via semi-analytic modelling with simple prescriptions for quenching, the observed correlations can be explained if quenching due to central compactness is rapid while quenching due to halo mass is slow.Comment: 16 pages, 11 figures, MNRAS accepte

    Cool gas accretion, thermal evaporation and quenching of star formation in elliptical galaxies

    Full text link
    The most evident features of colour-magnitude diagrams of galaxies are the red sequence of quiescent galaxies, extending up to the brightest elliptical galaxies, and the blue cloud of star-forming galaxies, which is truncated at a luminosity L~L*. The truncation of the blue cloud indicates that in the most massive systems star formation must be quenched. For this to happen the virial-temperature galactic gas must be kept hot and any accreted cold gas must be heated. The elimination of accreted cold gas can be due to thermal evaporation by the hot interstellar medium, which in turn is prevented from cooling by feedback from active galactic nuclei.Comment: 2 pages, to appear in Astronomische Nachrichten (proceedings of Symposium 6 of the JENAM 2008, Vienna
    corecore