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Abstract

This paper discusses the implications of learning theory for the analysis of games with a

move by Nature.  One goal is to illuminate the issues that arise when modeling situations

where players are learning about the distribution of Nature’s move as well as learning

about the opponents’ strategies.  A second goal is to argue that quite restrictive

assumptions are necessary to justify the concept of Nash equilibrium without a common

prior as a steady state of a learning process
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1. Introduction

This paper discusses the implications of learning theory for the analysis of games

with a move by Nature.  Our premise is that equilibrium in games arises as the result of

learning, and that just what people will learn depends both on the true distribution of

Nature's move and on what they observe when the game is played.  One of our goals is to

illuminate some of the issues involved in modeling players’ learning about opponents’

strategies when the distribution of Nature’s moves is also unknown.  In this vein, we

show how the relevant equilibrium concept changes when there are many agents in the

role of a single “player,” and when Nature's move is determined once and for all at the

beginning of the game instead of being drawn independently each period.  A second and

more specific goal is to investigate the concept of Nash equilibrium without a common

prior, in which players have correct and hence common beliefs about one another’s

strategies, but disagree about the distribution over Nature’s moves.3  This solution is

worth considering given the recent popularity of papers that apply it, such as Banerjee and

Somanathan [2001], Piketty [1995], and Spector [2000].4  We argue that Nash

equilibrium without a common prior is difficult to justify as the long-run result of a

learning process, because it takes very special assumptions for the set of such equilibria to

coincide with the set of steady states that could arise from learning.

The intuition for our concern is simple: In order for repeated observations to lead

players to learn the distribution of opponents’ strategies, the signals observed at the end

of each round of play must be sufficiently informative.  Such information will tend to

                                                
3 Harsanyi [1967-8] proposed that games of incomplete information be analyzed as games with a move by
Nature, where the move by Nature is an artificial construction (see, e.g., Dekel and Gul [1997] for a
discussion).  He defined (Bayesian) Nash equilibrium in his model both for the case of a common prior and
for the case where priors are allowed to differ; this is the notion of Nash equilibrium we use herein.  Our
approach is motivated by a learning model in which play is repeated.  In those cases where we assume that
the move by Nature is also repeatedly drawn and its consequences observed, the interpretation of Nature's
move as an artificial construction is not necessary, so it seems inappropriate there.
4 We do not explore these applications in detail, so in particular we do not claim that their use of Nash
equilibrium is inappropriate.  We only want to argue that in the context of incorrect priors, the use of Nash
equilibrium requires more careful justification than is typically given.  In fact, Spector [2000] assumes that
actions are observed while payoffs are not, noting that, while these are fairly extreme assumptions, if
payoffs were observed then the players would learn the true distribution of Nature’s move.
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lead players to also have correct and hence identical beliefs about the distribution of

Nature’s moves.  While this basic argument is straightforward, our examples highlight

some less obvious points.

Our point of departure is the notion of self-confirming equilibrium, which has

been used to model the outcome of learning processes (see, e.g., references in footnotes 5,

7, and 8).  This equilibrium concept requires that each player’s strategy is optimal given

the player’s beliefs about opponents’ strategies and Nature’s moves, and that these beliefs

are consistent with the distribution of outcomes in the game that the player observes.  In

Section 2 we give a formal definition that extends  the notion to allow for different

possible maps from outcomes of the game to observations, in particular allowing for the

case where players do not observe the actions taken by others or their own payoffs.     

 When players observe the “outcome” of round of play, meaning both the actions

taken and the realization of Nature's move, the set of self-confirming equilibria is the

same as the set of Nash equilibria with a common prior, so any strategy profile that is not

a Nash equilibrium with a common prior cannot be a self-confirming equilibrium.  When

players observe less than the outcome, more beliefs are consistent with the players'

observations, so a Nash equilibrium without a common prior may be a self-confirming

equilibrium, but only because the set of self-confirming equilibria is then large (and

therefore may well include many outcomes that are not Nash equilibria).  This leads us, in

Section 3, to explore the relationship between the set of Nash equilibria when players

have given, possibly inconsistent, beliefs about Nature on the one hand, and the set of

self-confirming equilibria with the same beliefs on the other; we use a series of examples

and simple propositions to illustrate our concern with the use of Nash equilibrium when

the prior is not common.  Propositions 1, 2, and 3 present cases in which these sets only

coincide for the case of a common prior.  Proposition 4 presents a case where there are

self-confirming equilibria with correct beliefs about Nature that are not Nash even with

correct prior.  On the other hand, Proposition 5 identifies a very special case where the

sets of Nash and self-confirming equilibria do coincide.

Section 4 shows how to extend the equilibrium concept used in Section 3 to

games in which there are many agents in the role of each player, and agents are randomly



4

matched each period.  This situation is of interest because it serves to motivate our

assumption that subjects ignore repeated-game considerations and try to maximize their

payoff in each play of the stage game; for the same reason, this is a commonly used

design in game theory experiments. Section 5 considers alternate specifications of the

stochastic structure of Nature's move, explaining how they alter the definition of self-

confirming equilibrium and its properties.  We begin with the case where Natures to

make a once-and-for-all choice of a single profile of types that will apply to all matches;

this specification has been used in many game-theory experiments.  We then consider the

case where Nature makes a once-and-for-all choice for each agent, but where different

agents in a given player role can have different types, and we conclude with a brief

discussion of alternate, more complex, stochastic structures.

Of course, our conclusions are all based on the idea of learning as a justification

for equilibrium.  In particular, if players achieve equilibrium through deliberation, then

Nash equilibrium without common priors may be sensible.  However, it is not at all clear

how this would work in the presence of multiple equilibria.  Moreover, the practical

difficulties in computation and the amount of information that can be required to find an

equilibrium makes this seem to us a weak justification for studying Nash equilibrium.

Our criticism of Nash equilibrium without a common prior does not mean we are

arguing for the common prior assumption per se, and indeed we are sympathetic to the

idea that some situations are better modeled without common priors; our concerns are

with the uncritical use of the Nash equilibrium solution concept in the absence of a

common prior.  Our learning-theoretic critique is related to two other problems of Nash

equilibrium without a common prior.  One is internal consistency: a Nash equilibrium

when players have different priors in general is not a Nash equilibrium when Nature is

replaced with a player who is indifferent among all her choices and who behaves exactly

as did Nature, because in a Nash equilibrium the strategy of the player replacing Nature is

known.  A related problem (Dekel and Gul [1997]) is that the epistemic foundations of

Nash equilibrium without a common prior are unappealing.  The epistemic foundation for

Nash equilibrium relies on a common prior about strategies, and it is not obvious why we
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should impose this on the states of Nature underlying the strategic uncertainty and not on

those corresponding to other aspects of the state of Nature.

As mentioned, this paper is related to other work that uses notions similar to self-

confirming equilibrium.  Jordan [1993] and Jackson and Kalai [1997] are also related.

Like us, they compare the long-run outcomes of a learning process to the equilibria of a

static stage game, and several of our findings are similar to some of theirs.  One important

difference between those papers and this one is that they study Bayesian equilibrium play

of an overall “recurring game” that has a common prior, while we study the steady states

of non-equilibrium learning processes that need not start out with common beliefs.   We

say more about the relationship between these papers in sections 3 and 5.

2.  The Model
We consider a static simultaneous-move game with I  player roles.  (All

parameters of the game, including the number of players, and their possible actions and

types, are assumed to be finite.) In the static game, Nature moves first, determining

players’ types, which we denote i iθ ∈Θ .  To model cases where the types alone do not

determine the realized payoffs, we also allow Nature to pick 0 0θ ∈Θ ; we call this

“Nature’s type.” Players observe their types, and then simultaneously choose actions

i ia A∈  as a function of their type, so that a strategy iσ  for player i  is a map from her

types to mixed actions.  Player i’s utility ( , )iu a θ  depends on the profile

1( ,..., )Ia a a= A∈  of realized actions, and on the realization 0 1( , ,..., )Iθ θ θ θ= ∈Θ of

Nature’s move.  When player i’s utility does not depend on Nature’s move beyond i’s

own type, i.e., ( , ) ( , )i i iu a u aθ θ= , we refer to the game as having private values.  For

any finite set X, we let ∆( )X denote the space of probability distributions over X.  Player

i’s (stage-game) prior about Nature’s move is denoted iµ ∈∆ Θ( ) ; µ µ µ= { ,... }1 I  is the

profile of (stage-game) priors.  When i jµ µ=  for all i and j, the game has a common

prior; in the complementary case where µ µi j≠  for some i and j we say that the priors

are diverse.

Our solution concept is motivated by thinking about a learning environment in

which the game given above is played repeatedly.  We suppose that players know their

own payoff functions and the sets of possible moves of all of the players (A).  We suppose

that the set Θ  contains all of the type profiles that any player thinks is possible; some of
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these may have probability 0 under the true distribution governing Nature's move.

Players are not assumed to know either the strategies used by other players or the

distribution of Nature’s move; they learn about these variables from their observations

after each period of play.  For the time being, we also suppose that each period the types

are drawn independently over time from a fixed distribution p; this is the simplest

specification, and as we will see, it is the one that corresponds most closely to standard

models of Bayesian games.  The distribution p corresponds to the true distribution of

Nature’s move in the stage game, so when i pµ =  for all players i we say that the priors

are correct.5  For the time being, we also assume that there is a single agent in each

player role.  Sections 4 and 5 discuss the case where there is a large population of agents

in each role who are matched together to play the game.

Of course, what players might learn from repeated play depends on what they

observe at the end of each round of play.  To model this, we adopt the formalism used by

Battigalli [1987] and Rubinstein and Wolinksy [1994], and suppose that after each play of

the game, players receive private signals ( , )i iy y a θ=  which is their only information

about Nature’s and their opponents’ moves.  It is natural to assume that players observe

their own actions and types, but whether or not they observe others’ actions, or their own

and others’ payoffs, depends on the observation structure and will affect which outcomes

can arise in a steady state.  We assume that each player observes her own private signal

iy , along with her own action and own type.6  Since the definition given above places no

restrictions on the signal functions, it is consistent with the signal being the terminal node

of an extensive-form game, so can be applied to more than just static games with an

initial move by Nature.  However, to focus on the issue of games with moves by Nature,

we will not consider an explicit extensive-form structure, and we concentrate on

                                                
5 Note that if players are Bayesians they will have a prior about the state of the overall learning process, and
this prior need not be the fixed iµ  that is taken as data in the specification of the stage game.  We call the
latter objects “priors” to conform to past usage, but the language is inaccurate once we set the stage game in
a repeated learning setting, and hence we occasionally emphasize this by referring to them as stage-game
priors.
6 We consider the case in which knowledge of opponents’ play comes only from learning by observation
and updating, and not from deduction based on opponents’ rationality, so we do not require that players
know their opponents’ utility functions or beliefs.  This is also the reason we do not need to consider moves
by Nature that one player thinks that another thinks are possible, as no deductions are made, only learning
from observations.  Rubinstein and Wolinsky [1994], Battigalli and Guaitoli [1997] and Dekel, Fudenberg
and Levine [1999] present solution concepts based on steady states in which players do make deductions
based on rationality of the other players.
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observation structures arising from play of a one-shot simultaneous-move game.

Fudenberg and Kreps [1988, 1995] and Fudenberg and Levine [1993] examined learning,

steady states, and self-confirming equilibria in games with non-trivial extensive forms.

We will not formally model the dynamics of learning, but will appeal informally

to the idea that a steady state of a belief-based learning process must be a self-confirming

equilibrium (Fudenberg and Levine [1993]).  Thus, our focus is on how the information

that players observe at the end of each round of play determines the set of self-confirming

equilibria, and how these equilibria relate to the Nash equilibria of the game.

The key components of self-confirming (and Nash) equilibrium are each player i’s

beliefs about Nature’s move, her strategy, and her conjecture about the strategies used by

her opponents.  Player i’s beliefs, denoted by µi , are a point in the space ∆ Θ( )  of

distributions over Nature’s move, and her strategy is a map σ i i iA: ( )Θ ∆→ .  The space

of all such strategies is denoted Σi , and the player’s conjectures about opponents’ play

are assumed to be a ˆ iσ −  ∈×− −i iΣ , that is, a strategy profile of i’s opponents.  The

notation ˆ ( | )i
iµ θ⋅  refers to the conditional distribution corresponding to µi  and θ i , while

( | )i i iaσ θ  denotes the probability that ( )i iσ θ  assigns to ai .

Definition: A strategy profile σ  is a self-confirming equilibrium with conjectures ˆ iσ −

and beliefs ˆ iµ  if for each player i ,

(i) for all iθ  with ( ) 0ip θ = , ˆ ( ) ( )i i ipµ θ θ=

and for any pair ˆ,i iaθ  such that ˆ ˆ( ) ( | ) 0i
i i i iaµ θ σ θ⋅ >  both the following conditions are

satisfied

(ii)
,

ˆˆ ˆargmax ( , , , ) ( | ) ( | )ii i i

i
ai i i i i i i i i ia

a u a a aθ θ θ µ θ θ σ θ
− −

− − − − − −∈ ∑ ,

and for any iy  in the range of iy

(iii)
ˆ{ , : ( , , , ) }

ˆ{ , : ( , , , ) }

ˆ ˆ( | ) ( | )

( | ) ( | ).

i i i i i i i i

i i i i i i i i

i
i i i i ia y a a y

i i i i ia y a a y

a

p a

θ θ θ

θ θ θ

µ θ θ σ θ

θ θ σ θ
− − − −

− − − −

− − − −=

− − − −=
=

∑
∑
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We say that σ  is a self-confirming equilibrium if there is some collection ˆ ˆ( , )i
i i Iµ σ − ∈

such that (i), (ii) and (iii) are satisfied.7

Condition (i) is a consequence of the assumptions that players observe their own

types and that the types are i.i.d.  over time; it will not apply in the setting considered in

Section 5, where a player’s type may be fixed once and for all.  Condition (ii) says that

any action played by a type of player i that has positive probability is a best response to

her conjecture about opponents’ play and beliefs about Nature’s move.  Condition (iii)

says that the distribution of signals (conditional on type) that the player expects to see

equals the actual distribution.  This captures the least amount of information that we

would expect to arise as the steady state of a learning process.

Note that the set of self-confirming equilibria can in general depend on the set Θ

of types that players think are possible, as this set determines the domain on which the

beliefs îµ  are defined.  On the other hand, the set of self-confirming equilibria does not

depend on the exogenous stage-game priors µ .  To see why, note that a complete belief-

based learning model would specify priors over both Nature’s probability distribution and

opponents’ strategies.  These priors would be updated over time, so that the steady state

belief-conjecture pair ( µ , ˆ iσ − ) need not be the same as the stage-game priors.  In the

learning process, different priors can lead to a different distribution over steady states; in

our definition the set of self-confirming equilibria corresponds to the set of possible

steady states for all initial conditions of the learning process.

We will sometimes consider the restriction of self-confirming equilibria to the

case where players’ beliefs about Nature satisfy certain restrictions.  In particular, we say

that a self-confirming equilibrium has “independent beliefs” if for all players i the beliefs
ˆ iµ  are a product measure.  Because the domain of ˆ iµ  is all of 0 1 ... IΘ ×Θ × Θ ,

independence implies that player i’s beliefs about the types of her opponents do not

depend on her own type.  This restriction is most easily motivated in games where the

                                                
7 It is appropriate to have a single ˆ iσ−  for each player i in the definition because we assume that there is a
single agent in each player role.  This is called the “unitary” version of self-confirming equilibria; when we
consider large populations and matching in Section 4 we allow for heterogeneous beliefs.

Note that i’s beliefs about opponents’ play take the form of a strategy profile as opposed to a
probability distribution over strategy profiles.  The complications that arise due to correlations in
conjectures are discussed in Fudenberg and Kreps [1988] and Fudenberg and Levine [1993]; we simplify by
ignoring them here.  Given this restriction, there is no further loss of generality in taking beliefs to be point
conjectures.  Battigalli [1987] defined a similar concept to the one above, as did Kalai and Lehrer [1993].
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true distribution p is a product measure, that is, players’ types are in fact independent, as

in this case assuming independent beliefs amounts to saying that players understand this

particular fact about the structure of the game.  The following game demonstrates the

effect of assuming independent beliefs.

Example 1: Independent Beliefs

Consider the following “bandit problem,” a one-person, two-type, two-action game, with

two different states in 0Θ .  The actions are labeled In and Out; the player’s types are

labeled “Timid” (T) and “Brave” (B), the “Nature’s type” states, 0Θ , are labeled L and R.

Both types get a payoff of 0 from Out.  Payoffs from In are given in the table below.

L R

Brave 1 2

Timid 2 -1

Notice that In is a dominant strategy for the Brave type.  Suppose the player does not

observe Nature’s move but does observe her own payoff.  Suppose also that the objective

distribution p on Nature’s move assigns equal probability to the four states (B, L), (B, R),

(T, L) and (T, R).  The Brave type has In as a dominant strategy, and so Brave will go In

in every self-confirming equilibrium.  Thus, since the player observes her payoff, the

player learns the distribution of Nature’s move conditional on Brave, so the only self-

confirming equilibrium with independent beliefs has ˆ pµ =  and both types playing In.

However, there is also a self-confirming equilibrium without independent beliefs where

the Timid type stays Out because the player believes that Nature plays R whenever the

player is Timid, that is ˆ ( | ) 1i R Tµ = .

If there were only a Timid type, then clearly there would be a self-confirming

equilibrium in which the player stays Out; this is exactly Example 5 (and similar to

Example 1) of Jackson and Kalai [1997].

■

We explore the consequence of independent beliefs further in Example 7 of Section 5.

This independence is one example of a situation where players use a priori information
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about the joint distribution of types to restrict their beliefs.  Another example is the case

where players know the conditional distribution of Nature’s type conditional on their

own.  Since players learn the distribution of their own type, they will be able to deduce

the distribution of Nature’s type, 0θ .  Thus Nash equilibria will only be self-confirming if

players have correct beliefs about Nature’s type.  A third example is where players know

the distribution of their opponents’ types conditional on their own, but not necessarily

that of Nature.  In this case players will learn the distribution of players’ types, that is, in

any self-confirming equilibrium the marginal of µ̂  on players’ types will coincide with

the marginal of p on players’ types; this is one of the hypotheses of Proposition 6 below.

We are interested in the relationship between the set of self-confirming equilibria

and the set of Nash equilibria.  In a Nash equilibrium, each player’s strategy must

maximize her expected payoff given her stage-game prior about the distribution of θ  and

correct conjectures about the play of the opponents.

Definition: A strategy profile σ  is a Nash equilibrium with conjecture ˆ iσ −  and beliefs
ˆ iµ  if for each player i , and for any pair ˆ,i iaθ  such that ˆ ˆ( ) ( ) 0i

i i iaµ θ σ⋅ >

(ii)
,

ˆˆ ˆargmax ( , , , ) ( | ) ( | )ii i i

i
ai i i i i i i i i ia

a u a a aθ θ θ µ θ θ σ θ
− −

− − − − − −∈ ∑ ,

and

(iii') ˆ i iσ σ− −= , ˆi iµ µ= .

Note that (iii') has the further implication that ( ) 0i
iµ θ >  implies ˆ ( ) 0i

iµ θ > .8

Note also that the definition of Nash equilibrium, unlike that of SCE, is unrelated to the

observation structure; that is, the maps ( , )iy a θ  do not appear in the definition.

When the stage-game priors are diverse, we say that the Nash equilibrium has

diverse priors.  Finally, to distinguish the case where the beliefs are correct, that is

µ i p=  for all i, we say this is a Nash equilibrium with correct priors.

                                                
8 This definition of Nash equilibrium allows for a player to believe that an opponent is not optimizing, since
j can assign strictly positive probability to a type of i to which i assigns zero probability.  To deal with this
issue we could state the primitives of the game as conditional probabilities ( | )i

i iµ θ θ−  and impose interim
optimality even for own types to which one assigns zero probability.  We chose to avoid this extra
complexity in the notation.
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The next result shows the restrictive effect that the assumption of private values

has on the extent to which allowing for diverse priors increases the set of Nash

equilibrium profiles.   Later results in the paper show how the private-values assumption

enables sharp comparisons of the sets of Nash and self-confirming equilibria.

Proposition 0: The set of Nash equilibria of a two-player game with private values and

arbitrary, possibly diverse, priors depends only on the support of the priors, and equals

the set of Nash equilibria of the same game with common priors and the same support.

That is, if Θ  is the fixed support of the distributions, the set of σ that are Nash equilibria

for some 1 2,µ µ  with support Θ  equals the set of σ  that are Nash equilibria for some

common prior µ  on Θ .

Proof: A player’s prior about her own type does not matter to him, and so there is no

harm in modifying it to reflect her opponent’s belief.  In a similar vein, neither player

cares about Nature’s type 0θ .  Thus, if σ  is a Nash equilibrium where player 1’s prior on

1 2Θ ×Θ is 1 1 1
1 2µ µ µ= × , and two’s prior is 2 2 2

1 2µ µ µ= × , then it is also an equilibrium when

the priors are both 2 1
1 2µ µ× .

■

The following proposition summarizes how opposite extreme assumptions on

players’ observations effects the beliefs and strategy profiles in the self-confirming

equilibria, leading in particular to ruling out profiles that are Nash equilibria only with

diverse priors at one extreme, and allowing for a very large set of outcomes at the other.

This leads us in the next section to explore the extent to which intermediate assumptions

on observability can result in a closer relationship between Nash and self-confirming

equilibria.

Proposition 1: If players observe Nature’s move, then in any self-confirming equilibrium

the beliefs equal the objective distribution ( ˆi pµ = ).  Conversely, if players observe

nothing ( ( , )iy a yθ = for all a  and θ ) then the set of self-confirming equilibria allows

for any beliefs µ̂ , including µ̂ µ= , and includes all profiles of ex-ante undominated

strategies.
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Proof: The proof of this statement, like those of most of the results in this paper, is an

immediate consequence of the definitions, and hence often omitted.  In this case, the

conclusion follows from condition (iii) of the definition of SCE, which requires that the

beliefs and conjectures generate the distribution of signals that the player actually sees.  In

particular, the first hypothesis implies that any profile iθ−  generates a unique signal, so

for each such profile ˆ ˆ( | ) ( | )
i

i
i i i i ia

aµ θ θ σ θ
−

− − − −∑  = ( | ) ( | )
i

i i i i ia
p aθ θ σ θ

−
− − − −∑

hence ˆ ( | )i
i iµ θ θ−  = ( | )i ip θ θ−  as claimed.  Regarding the second claim, the strategies

are ex-ante undominated because there is only one agent in each player role, so that an

agent’s conjectures about the other players’ strategies must be the same regardless of that

agent’s action and type, and the belief about Nature must also be conditionally

independent of the action chosen given the type.

■

3.  The Relationship Between Self-Confirming Equilibria and Nash
Equilibria

In this section we focus on the relationship between self-confirming equilibria and

Nash equilibria.  Specifically we use a series of examples to explore the assumptions

about observability under which the set of self-confirming equilibrium profiles with

beliefs µ̂  that are equal to some given µ  coincide with the set of Nash equilibrium

profiles of the game where players’ exogenous stage-game priors regarding Nature are

this same value of µ .  We refer to this equality of profiles by saying that the sets of Nash

and self-confirming equilibria with beliefs µ coincide.

3.1 The tension between Nash and self-confirming equilibria

As mentioned above, if players cannot observe or deduce their opponents’ actions

at the end of each period, then in general there can be self-confirming equilibria that are

not Nash equilibria.  So we begin by considering the case in which players either directly

observe, or indirectly deduce from other observations, the realized actions of their

opponents after each play of the game.  
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Let 0 1 1 1( , ,... , ,..., )i i i Iθ θ θ θ θ θ− − +=  denote a specification of the types of Nature

and of all players other than i.  Suppose that players observe their own utility, so that
' '( , ) (( , ),( , ))i i i i i iu a u a aθ θ θ− −≠  implies ' '( , ) (( , ),( , ))i i i i i iy a y a aθ θ θ− −≠ .  With generic

payoffs the map ( , )iu a θ  is 1-1, and both the actions of other players, ia− , and Nature’s

move, θ , can be uniquely determined from iy .  Consequently, the only beliefs and

conjectures that are self confirming are the correct ones.

Next suppose that i iy a−= , that is, players observe their opponents’ actions.

Then in a self-confirming equilibrium players must know the conditional distribution of

opponents’ actions given their own type.  Suppose in addition that the game is a game of

private values, that is, ( , ) ( , )i i iu a u aθ θ= .  Since a player’s payoffs do not depend on her

opponents’ types, in a game with private values, any strategy for player i that is a best

response to conjectures and beliefs consistent with the observed distribution over actions

must also be a best response to the true distributions of opponents' actions and Nature's

move.  This implies that with private values and observed actions every self-confirming

equilibrium has the same strategies as a Nash equilibrium of the game with the correct

and hence common priors.

Proposition 2: If either

(i) payoffs are generic ( ( , ) ( ', ')i iu a u aθ θ≠  if either 'a a≠  or 'θ θ≠ ) and

observed, or

(ii) there are private values and observed actions,

then the set of strategy profiles in self-confirming equilibria coincides with the set of

Nash equilibrium profiles of the game with the correct (hence common) prior.

Thus under either condition of the proposition, if the stage-game priors in a given

Bayesian game are not common, and in addition, if the set of Nash equilibria of that game

differs from the set of Nash equilibria with the correct prior (that is if the presumption of

diverse priors has any significance), then the Nash equilibria of the game with diverse

priors will not coincide with the self-confirming equilibria.  This is demonstrated in

Example 2 below.
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Jackson and Kalai [1997], Theorem 1, prove a related result.  They assume that

payoffs are “privately observable,” and that “social learning implies private learning,” and

reach the similar conclusion that Bayesian equilibria of a “recurring” game converge to

Bayesian equilibria of the stage game (with correct priors).9  Their Example 2, of a

repeated private-values first-price sealed-bid auction with observed winning bids is an

instance of their result, and of ours.  Proposition 2 (i)’s assumption of observed payoffs

implies that payoffs are privately observed, but this is not sufficient for the result, as

shown by Example 4.   The assumptions of Proposition 2 (ii) also imply that payoffs are

privately observed; but as before the latter is not sufficient for our conclusion.

Example 2: Nash Equilibria that are Not Self-Confirming Equilibria

We consider a game with a column player, C, and two row players, R1 and R2.  Nature

chooses L or R, with equal probability; the column player observes Nature’s choice of L

or R, while the two other players do not.  Thus players R1 and R2 each have a single type,

player C has two types, L and R, and the set Θ0  of Nature’s types is empty.

In this game, C’s payoff depends only on her own action and type, but not on the

actions taken by the row players: specifically, C’s actions are labeled l and r, and C gets 1

for choosing the same as Nature, and 0 for choosing the opposite.  The row players’

payoffs each depend on the column player’s action and their own action, as shown in the

following two matrices.

                                                
9 A game has privately observed payoffs if for all players i and all , , ,i ia aθ θ− − , ( , ) (( , ),( , ))i i i i i iy a y a aθ θ θ− −=

implies ( , ) (( , ),( , ))i i i i i iu a u a aθ θ θ− −= .  Jackson and Kalai consider recurring games in which successive
players play a stage game, and observe a public signal, but need not know the distribution of their own type
or actions played by former players in the same role.  Nature picks a stage game distribution from a fixed
distribution, as in our discussion of exchangeability in Section 5c, and players have a correct and hence
common prior about this initial move by Nature. Their condition that social learning implies private
learning says, roughly, that whenever the distribution of past public signals permits an observer to forecast
as well as if he knew the distribution of Nature's move, then the players’ forecasts conditional on past public
signals, their own type, and own action, are the same as if they also knew the distribution of Nature’s move.
This is a condition on the equilibrium of the overall recurring game; it is always satisfied when actions are
observable and types are independently distributed.
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R1 L R R2 l r

U ¾ ¾ U ¾ ¾

D 1 0 D 0 1

This is a game with private values, because the row players’ payoffs depend only on the

column player’s action, not her type.  We will assume that actions are observed at the end

of each round of play in the learning environment, so that Proposition 2 applies.  Clearly

the column player has a dominant strategy of playing l when type L and r when type R, so

in a self-confirming equilibrium, the column player plays l on L and r on R, and so the

column player takes each action half of the time.  The row players observe this, so must

play U.

Now suppose that R1’s stage-game prior assigns probability .9 to type L and .1 to

R, while R2’s stage-game prior is the reverse, with .1 probability of type L and .9 to R.  In

a Nash equilibrium, C plays l upon observing L and r upon observing R, and the row

players know this.  Given the stage-game priors, this implies that R1 and R2 believe that

they will face the actions l and r respectively .9 of the time.  Consequently, in this Nash

equilibrium with diverse stage-game priors, R1 and R2 will both choose D.  However,

this is not a Nash equilibrium for any common prior, and so it is not a self-confirming

equilibrium for any p when the column player’s action is observed.

We see in this example that, when players observe actions, the self-confirming

equilibria in which beliefs are equal to the stage-game priors is unique, and is different

from the Nash equilibrium.  When players observe nothing at all, the set of self-

confirming equilibria with beliefs equal to the stage-game priors includes the Nash

equilibrium, but in fact imposes no restrictions at all on the play by R1 and R2 since the

row players will not know anything about column’s choice.

One way of summarizing this example is to say that although Nash equilibrium

requires two players to agree about an opponent’s strategy, these players can have

different forecasts about the distribution of that opponent’s actions if they have different

beliefs about the distribution of that player’s type.  In contrast, with observed actions

players correctly forecast the distribution of opponent’s actions in any self-confirming
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equilibrium, but they can have different beliefs about the distribution of Nature’s move

and about the opponent’s strategy

■

As we noted earlier, the set of self-confirming equilibria can depend on the set Θ  of

types that the players think are possible, as this set is the support of the allowed beliefs,

and (as in the second equilibrium discussed in Example 1) some beliefs about the

consequences of an action might keep a player from playing it.  However, when players

know their payoffs as a function of the strategy profile, the game is one of private values,

and as in Proposition 2b, each player's best response depends only on his forecast of the

distribution of his opponents' actions.  This leads to the following conclusions:

Proposition 3:

(i) When there are private values and the distribution p of Nature's move assigns

probability 1 to a single profile of types, the definition of self-confirming equilibrium in

this paper is equivalent (up to the different assumptions on the observation structure) to

the definition given in Fudenberg and Levine [1993] for the complete-information case,

and in particular is independent of the set Θ .

(ii) If in addition actions are observed each round, the set of self- confirming equilibria

reduces to the set of Nash equilibria of the complete-information game corresponding to

the realized payoff functions.

Proof: For part (i), recall that with private values, each player's set of best responses

depends only on the player’s conjecture about the play of the opponents.  Thus the

players’ beliefs about Nature's move are irrelevant for whether a strategy profile is a self-

confirming equilibrium; all that matters is that each player’s strategy is a best response to

the player’s conjectures about opponents’ play, and that these conjectures are consistent

with the distribution of signals that the player observes; this is exactly the definition of

self-confirming equilibrium in Fudenberg and Levine [1993], except that they specialize

to the case where the signal observed is the terminal node of an extensive-form game.
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Part (ii) follows because, as in to the proof of Proposition 1 condition (iii) of the

definition of SCE requires conjectures to be correct when actions are observed.

■

In Section 4, we develop a small extension of this proposition that applies to a common

design for game theory experiments.

The next two examples explore the role of observing actions in the relationship

between Nash and self-confirming equilibria in games that do not have private values.

We summarize their implications as follows.

Proposition 4 : (i) Without private values ( ( , ) ( , )i i iu a u aθ θ≠  for some ( , )a θ ), if neither

types nor payoffs are observed, but actions are ( ( , )iy a aθ = ), there can be self-

confirming equilibria with correct beliefs about Nature ( ˆ i pµ = ) that are not Nash even

with correct priors (Example 3).

 (ii) Even if the set of strategy profiles in self-confirming equilibria with beliefs ˆµ µ=
coincides with the set of Nash equilibria, conjectures about opponents’ play may fail to

be correct ( ˆ i iσ σ− −≠ ).  Consequently the profile can fail to be self confirming once

actions are added to the available information (Example 4).

Example 3: Self-confirming equilibria that are not Nash with observed actions

Player R and player C each choose either –1 or 1.  Player R’s type is either +1 (with

probability 2/3) or –1 (with probability 1/3), and player R’s payoff is her action times her

type, so player R plays +1 when type 1 and –1 when type –1.  Player C’s payoff is the

product of player R’s type and the two actions, so the unique Nash equilibrium with the

correct prior has player C play +1.  If all that player C observes is player R’s action, then

player C can have correct beliefs about Nature’s move and conjecture that player R plays

+1 when type –1 and mixes ½- ½ when type +1.  In this case the best response is for

player C to play –1.  Consequently, player C plays –1 in this self-confirming equilibrium.

 ■
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Example 4: A game where when payoffs are observed, Nash equilibrium and self-

confirming equilibrium are equivalent iff actions are not observed.

Consider a two-player game in which Nature chooses the left or right matrix.  Neither

player has private information.  Proposition 2 (i) does not apply because the payoffs

include ties as shown below.

A B A B

A 1, 1 0, 0 A 0, 0 1, 1

B 0, 0 0, 0 B 1, 1 0, 0

To analyze Nash equilibria, suppose that the stage game prior is that both players think

the left matrix is chosen with probability 1 ε− .  The strategic form for this game given

the common beliefs µ  is

The unique Nash equilibrium for the specified beliefs is (A, A).

Now suppose that in the learning environment, the true probability of the left matrix

is ε .  If players observe only their payoffs, then (A, A) is a self-confirming equilibrium

with beliefs (1 ε− ,ε ) and conjecture that the opponent is playing B: in this case each

player believes that playing A yields 1 with probability ε , and B yields 0.  However, if

players were to also observe actions, then the Nash equilibrium (A, A) would no longer be

self confirming.

■

A B

A 1-ε , 1-ε ε , ε
B ε , ε 0, 0
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3.2 Examples where Nash equilibria and self-confirming equilibria do
coincide.

Proposition 2 shows that with private values and observed actions, the set of

strategy profiles in self-confirming equilibria coincides with the set of Nash equilibrium

profiles of the game with the correct (hence common) prior, and Example 2 shows that on

these conditions there can also be Nash equilibria with diverse priors that are not self-

confirming with respect to any beliefs.  Our next example shows that the reverse

conclusion can hold: the sets of Nash equilibria and self-confirming equilibria for a given

diverse prior µ can coincide, even when actions are observed.

Proposition 5: The Nash equilibria with diverse priors µ  and the self-confirming

equilibria with beliefs µ̂ µ=  may coincide, whether or not players observe actions.

This is demonstrated by the following example:

Example 5: A game where Nash equilibrium and self-confirming equilibrium coincide for

a specific diverse belief about Nature’s move

L R L R

U 1, 1 0, 0 U -1, -1 0,0

D 0, 0 -1, -1 D 0, 0 1, 1

This is a two-player game in which Nature chooses the left (l) or right (r) payoffs, and

neither player observes Nature’s move.  The row player believes the left payoffs are

chosen, the column player believes the opposite: 1 2( ) ( ) 1l rµ µ= = .  So the unique Nash

equilibrium is for the row player to play U and the column player R, with payoffs (0, 0).

Whether or not players observe their opponent’s actions or their own utility, this profile is

self-confirming with beliefs equal to the given stage-game priors.  However, the subset of

self-confirming equilibria with beliefs in which µ µ1 2= is either (U, L), (D, R), or the

entire strategy space.

■
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Note that the diverse priors in the example are significant: the set of Nash (and

self-confirming) equilibria with the diverse priors differs from the set of Nash (and self-

confirming) equilibria with a common prior.  The example demonstrates this point using

ex-ante dominating strategies, in which it is irrelevant what players observe; in an

example in the appendix the players do care about their opponents’ actions, and in that

example the sets of pure-strategy Nash and self-confirming equilibria with a specific

diverse prior coincide if players observe either their own payoffs, or the opponents’

actions.

To summarize, we have seen that observing actions is neither necessary nor

sufficient for self-confirming and Nash equilibria to coincide.  Moreover, a Nash

equilibrium with a diverse prior that is a self-confirming equilibrium when players only

observe their payoff need no longer be a self-confirming equilibrium if players can

observe actions as well as payoffs.  This suggests that, loosely speaking, the “best” case

for Nash and self-confirming equilibria to coincide for some diverse beliefs µ is when

actions are observable and payoffs are not.  Moreover, Proposition 2 shows that with

observed actions and private values, any self-confirming equilibrium is a Nash

equilibrium with the correct beliefs.  This suggests that the simplest case where the two

sets might be equal with diverse beliefs is when actions are observed and payoffs depend

on Nature’s move as well as own type, that is 0( , ) ( , , )i i iu a u aθ θ θ= .  But even in this

case, the equivalence of NE and SCE is not guaranteed: In example 2 we saw that if

players observe actions and not payoffs, while each player can correctly infer the

opponents’ distribution of actions as a function the player’s own type, this need not force

them to agree about the distribution of private types, and it also does not force them to

agree about 0θ , the portion of Nature’s move that is unknown to everyone.

Proposition 6: If actions are observed but payoffs are not, ( ( , )iy a aθ = ), the set of Nash

equilibria coincides with the set of self-confirming equilibria under the additional

hypothesis that the marginal of µ  on players’ types coincides with the marginal of p on

players’ types.

Proof: Since actions are observed, in a self-confirming equilibrium each player learns the

distribution of opponent actions conditional on his own type and plays a best response.  In

a Nash equilibrium each player correctly knows opponent strategies, and infers the
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distribution of actions conditional on his own type.  Since the marginal µ  is the same as

p  the distribution of actions conditional on own type must be the same as in the self-

confirming case.

■

4.  Large Populations and Heterogeneous Beliefs
Next we focus on a class of games of special interest in learning theory and in

experimental economics: games in which players are randomly matched to play a “stage”

game.  In this setting it is natural to think of p as the distribution of types for a given

match, but we must also consider the relationship between the matching process and the p

from which players draw their observations.

Suppose that individuals in a given player role are independently matched in each

period with opponents in other roles, and that after each match is made Nature draws

types for that match according to the distribution p.  We know from Fudenberg-Levine

[1993] that when there are multiple agents in each player role, there can be

“heterogeneous” self-confirming equilibria in which different agents in the same role play

different strategies and have different conjectures.  Thus, when types are chosen

independently over time, and separately for each match, the appropriate definition allows

the beliefs and conjectures of the agents to vary with the strategy chosen.

Definition: A strategy profile σ  is a heterogeneous self-confirming equilibrium if for

each player i  there exists a finite set of strategies { : }k
i ik Kσ ∈ ⊂ Σ  such that iσ  is in the

convex hull of { : }k
i k Kσ ∈  and such that for each k

iσ  there are conjectures ˆ iσ −  and

beliefs ˆ iµ  (both of which can depend on k
iσ ), such that

(i) ˆ( ) ( )i i ip θ µ θ= ,

and for any pair ˆ,i iaθ  such that ˆ ˆ( ) ( | ) 0i
i i i iaµ θ σ θ⋅ >  both the following two conditions

are satisfied

(ii)
,

ˆˆ ˆargmax ( , , , ) ( | ) ( | )ii i i

i
ai i i i i i i i i ia

a u a a aθ θ θ µ θ θ σ θ
− −

− − − − − −∈ ∑ ,

and for any iy  in the range of iy
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(iii)
ˆ{ , : ( , , , ) }

ˆ{ , : ( , , , ) }

ˆ ˆ( | ) ( | )

( | ) ( | ).

i i i i i i i i

i i i i i i i i

i
i i i i ia y a a y

i i i i ia y a a y

a

p a

θ θ θ

θ θ θ

µ θ θ σ θ

θ θ σ θ
− − − −

− − − −

− − − −=

− − − −=
=

∑
∑

With this definition, iσ  corresponds to the aggregate play of the population of

player i's; each individual in the role of player i is playing one of the k
iσ , and the

individual's belief and conjecture depend on the strategy she plays.

Intuitively, allowing different agents in the role of player i to have different self-

confirming beliefs makes no difference when the beliefs must be correct.  For this reason,

allowing for heterogeneous beliefs makes no difference when players observe actions and

types at the end of each round, nor when players observe their realized payoffs and this

information reveals the types and actions, nor when players observe their opponent's

actions and there are private values: In all of these cases, as in Propositions 1 and 2, the

heterogeneous self-confirming equilibria coincide with the Bayesian Nash equilibria with

the correct beliefs.

A bandit problem provides an easy way illustrate the difference this heterogeneity

can make.  Consider a simplified version of the bandit problem in Example 1, where

player one now has the single type "Timid.” Playing Out gives this type a payoff of 0,

playing In gives 2 if Nature plays L and -1 if Nature plays R, and the distribution of

Nature’s move is such that it is optimal for the player to always play In.  The player

knows the structure of the model, but does not know the distribution of Nature's move;

the player observes her payoff but doesn't directly observe Nature's move.  In this game,

there is no self-confirming equilibrium where the player randomizes, since a player who

plays In with positive probability must know the expected payoff to In.  But there are

heterogeneous self-confirming equilibria where some players play In and others stay Out:

The players who play In are playing a best response to the true distribution of Nature's

move; the players who play Out believe that Nature plays R with probability more than

2/3, and never see evidence that this belief is mistaken.

Example B in the appendix shows that heterogeneity can make a difference even

in games where any SCE with unitary beliefs has beliefs that equal the true distribution.

■
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5.  The Joint Distribution of Nature’s Moves over Time, Agents, and
Players

So far we have supposed that that Nature makes independent draws from p each

period.  In this section we consider alternative stochastic processes for the specification of

types, and explore how this affects the notion of self-confirming equilibrium.

5a) Perfect Correlation: A single type profile in all matches and all dates

One specification that is often used in experiments is for Nature to make a once-

and-for-all choice of a single profile of types θ  that will apply to all matches.10  In this

case, even if the profile is chosen according to some non-degenerate distribution p, this

distribution is not directly relevant to the long-run outcome.  Thus, the appropriate

definition of self-confirming equilibrium replaces p in condition (iii) with the degenerate

distribution that chooses θ̂  with probability one.  This is “appropriate” in the sense that

the players learn only about the particular draw, and the relative probability of the types

that did not occur does not influence the set of possible steady states.11  Combining this

observation with Proposition 3, we conclude that if Nature picks the payoff functions

according to a possibly non-degenerate distribution, players know the map from actions

to their own payoffs (i.e.  private values), and actions are observed, the set of self-

confirming equilibria reduces to the set of Nash equilibria of the complete-information

game corresponding to the realized payoff functions.  This is the case in all the

experimental papers described in footnote 12.12

                                                
10 Examples include Cox et al, Chen (2000), Mitropoulos (2001) , and Oechssler and Schippers [2002].
11 Battigalli and Guaitoli [1997 Section 1.4] study exclusively the unitary-beliefs version of this case where
types are drawn once and for all.  They provide a version of the corresponding from of self-confirming
equilibrium, and use it to analyze an example which has the same property as example 7 below: their
Proposition 1 and discussion on p.  116 imply that in one state the players’ behavior coincides with their
behavior where the state is commonly known, whereas in another state there is a self-confirming
equilibrium in which players’ behavior can rely on the state not being commonly known.  Their footnote 4
states a special case of Proposition 2' below, and their footnote 10 discusses how to modify their definition
to correspond to the type-heterogeneous notion defined at the end of this section; they do not explore the
impact of this modification.
12 Of these, only Cox et.  al.  told subjects about the distribution from which the fixed types were drawn; in
the relevant treatments of their experiments, subjects were told nothing at all about the payoff functions of
their opponents.
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5b) Fixed types for each agent, but diversity across agents in the same role

Now we suppose that each agent's type is fixed once and for all, before any

matches have taken place, and that players are randomly matched each period, with the

matching process independent of the players' types.  Then even if the distribution p from

which the types were drawn exhibits correlation, the matching process will lead the

distribution of types in each match to be independent, and the distribution that governs

the learning process will be the product of the realized marginal distributions on each

player’s type.  The heterogeneous self-confirming equilibrium defined in Section 4 is

appropriate when Nature’s move is i.i.d.  over time, since a given agent eventually

receives many observations of the distribution of signals corresponding to each possible

type iθ  in the support of p, but it is not appropriate in the present case where types are

fixed once and for all, as each agent is only in the role of a single type, and there is no

reason that beliefs across types should be consistent with updating from a common

prior.13  Therefore, instead of imposing that restriction, we allow each type θ i  to have

any “interim belief” iθµ  that is consistent with that type’s observations.  Similarly, when

types are fixed, conjectures may depend on types.  The following notion of type-

heterogeneous self-confirming equilibrium captures the idea that types are fixed initially,

but that players are subsequently matched with opponents whose types have been drawn

according to p.

Definition: A strategy profile σ  is a type-heterogeneous self-confirming equilibrium if

for each player i , and for each îa  and θ i  such that ˆ( ) ( | ) 0ii i ip aθ σ θ⋅ >  there are

conjectures ˆ iσ −  and interim beliefs iθµ  (both of which can depend on ai  and θ i ), such

that both the following conditions are satisfied

 (ii)
,

ˆ ˆargmax ( , , , ) ( ) ( | )i
ii i i

ai i i i i i i i ia
a u a a aθ

θ θ θ µ θ σ θ
− −

− − − − − −∈ ∑ ,

(iii)  for any iy  in the range of iy

                                                
13 If no restrictions are imposed on the prior, then any collection of interim beliefs ( )i

i i

θ
θµ ∈Θ  can be

generated from a prior iµ  by setting ( , ) ( ) ( )i i i i i i iµ θ θ µ θ µ θ− −=  for some marginals ( )i iµ θ , but the interim
definition allows for each type of player i to think all types are independently distributed while also
allowing different types to have different beliefs.
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ˆ{ , : ( , , , ) }

ˆ{ , : ( , , , ) }

ˆ( ) ( | )

( | ) ( | ).

i

i i i i i i i i

i i i i i i i i

i i i ia y a a y

i i i i ia y a a y

a

p a

θ
θ θ θ

θ θ θ

µ θ σ θ

θ θ σ θ
− − − −

− − − −

− − − −=

− − − −=
=

∑
∑

Notice that condition (i), which required correct beliefs about one’s own types, is no

longer appropriate, since each agent in a player role does not observe the distribution of

types in that player role.

In the following variant on Example 1 “In when Brave, Out when Timid” is not a

self-confirming equilibrium, and it is not a heterogeneous self-confirming equilibrium,

but it is a type-heterogeneous self-confirming equilibrium.

Example 6: Consider a two-player game with two types of player 1.  Player 1 can play In

or Out; Out gives payoff 0, while the payoff to In depends on player 1's type and player

2's action as shown below.  (Player 2's payoff is not shown, because we assume that for

player 2 L is a dominant strategy.)

L R

Brave 1 2

Timid 2 -1

Suppose that player 1 observes her type, action, and realized payoff, but not the action of

player 2.  The only self-confirming equilibrium is for both types of player 1 to play In,

and this is also the only heterogeneous self-confirming equilibrium: Since for the Brave

type In is a dominant strategy, when types are i.i.d., any undominated strategy for an

agent in the role of player 1 will cause the agent to learn that 2 plays L.  However, “Brave

In, Timid Out” is a type-heterogeneous self-confirming equilibrium, because a Timid type

can stay Out forever and never learn the true distribution of player 2's play.  14

                                                
14 The difference between this example and a bandit problem such as Example 1, where player 2 is replaced
by Nature, is that player 1 can think Nature’s move is correlated with her type, but player 1’s conjecture
about player 2 must correspond to a strategy for player 2, and since player 2 does not observe player 1’s
type, player 2’s strategy cannot depend on it.
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■

In the examples so far, type-heterogeneity mattered because it let different types

play different actions and maintain different beliefs.  In the next example, type-

heterogeneity allows types to play the same action.

Example 7: Independent heterogeneous Self-Confirming Equilibria versus Independent

type-heterogeneous Self-Confirming Equilibria

Consider another variant of the one-player game of Example 1, where the payoffs for

Out remain 0 and those for In are

L R

Brave 2 -1

Timid -1 2

Here both types can stay Out only if they disagree about Nature’s move: Brave must

believe R and Timid must believe L.  Suppose in fact that players observe nothing, so that

behavior depends only on stage-game priors.  If the players’ types are drawn anew each

period and beliefs are restricted to be independent, then in any self-confirming

equilibrium ( ) ( ) ( ) ( )| | | |In Brave In Timid Out Brave Out Timidσ σ σ σ+ ≥ +  since the

beliefs corresponding to any kσ  must lead them to play In either when they are Brave or

when they are Timid (or both).  On the other hand, if players’ types are drawn once and

for all, they can stay Out forever (each type can have constant beliefs justifying Out).

 ■

5c) More general stochastic structures

Underlying our notion of a steady state is the idea that players repeatedly sample

from a fixed distribution that does not change over time.  Suppose we consider the more

general class of exchangeable processes for types, which have a representation as a

“prior” probability distribution over (conditionally) i.i.d.  processes, and for the time

being suppose there is a single agent in the role of each player.  Then we can think of

Nature making a single once-and-for-all draw p̂ from the class of i.i.d.  processes, and the

“appropriate distribution” to use in the definition of a self-confirming equilibrium is the
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p̂  drawn by Nature; the fact that players “could have” faced some different distribution

and that the overall distribution was p is not relevant in the long-run steady state.  15Note

that the exchangeable model nests both the case of a single once-and-for-all draw θ̂  and

the case where each period’s θ  is an independent draw from p.  Note also that the

distribution from which Nature chooses p̂  does influence the ex-ante distribution over

steady states.

Thus, we can extend the discussion of private values.

Proposition 2': With private values ( ( , ) ( , )i i iu a u aθ θ= ) and observed actions

( ( , )iy a aθ = ), a self-confirming equilibrium is a Nash equilibrium in a game with stage-

game priors equal to the “realized distribution” of types, p̂ .

One can also consider the class of ergodic processes instead of exchangeable ones.  It is

natural in that case to think of p as the invariant distribution.  Notice in this case that

players are not actually drawing from p each period, rather they are drawing from time-

varying distributions which average out to p.  If players believe that the true process is

exchangeable, then beliefs in steady states will still satisfy the self-confirming conditions

of Section 2 with respect to this ergodic distribution.16

                                                
15 The relationship between the ex-ante distribution p and the realized value of p̂  here is analogous to the

relationship between the prior Γ  and the realized τ  in Jackson and Kalai [1997].
16 Of course, sophisticated players might realize that Nature’s moves do not have an exchangeable
distribution, in which case our definition of self-confirming equilibrium with p set equal to the ergodic
distribution would not correspond to steady states.
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Appendix

Example A

Since Example 5 involves dominant strategies, it is not very interesting from a

game-theoretic perspective.  The next, more complicated, example, due to Phil Reny,

shows that dominant strategies are not required for the property that the pure-strategy

Nash and self-confirming equilibria coincide if players observe actions or payoffs or both.

However, the equivalence fails for mixed-strategy equilibria.

In this game there are three states of Nature '
0 0 0, '', '''θ θ θ and no types.  There are

two players, a row and a column player; each chooses between three actions T, M, B.

Payoffs in each of the states is given in the table below.

0 'θ 0 ''θ 0 '''θ

T M B T M B T M B

T 0, 1 0, ½ 1, -1 T 0, -1 0, ½ -1, 1 T 0, 1 0, 5 1, 1

M 5, 0 5, 5 ½, 5 M 5, 0 5, 5 ½, 0 M 5, 0 5, 5 5, 0

B 0, 0 0, 5 -1, 0 B 0, 0 0, 5 1, 0 B 0, 0 0, 5 1, 0

Beliefs about and the actual distribution of Nature’s move are given below

0 'θ 0 ''θ 0 '''θ

µ1 1-2ε ε ε

µ2 ε 1-2ε ε

µ ε ε 1-2ε

To analyze the game, note that if 2 plays T or M it is a strict best response for 1 to play M;

if 1 plays M or B it is a strict best response for 2 to play M.  Hence the relevant portion of

the game involves 2 playing B or 1 playing T.  Payoffs in these cases are summarized

below.
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0 'θ 0 ''θ 'θ

1 -1 1

½ ½ 5

u1 (T, B, θ0)=u2 (T, T, θ0)=

u1 (M, B, θ0)=u2 (T, M, θ0)=

u1 (B, B, θ0)=u2 (T, B, θ0)= -1 1 1

With the given stage-game priors the pure-strategy Nash equilibria are (M, M) and (T, B).

The latter is not a Nash equilibrium with a common prior.  If players observe payoffs, or

opponents' actions, then there are two pure strategy self-confirming equilibria with beliefs

µ1, µ2: one with the strategy profiles (M, M) and the other with (T, B).

To see that this equivalence fails for mixed strategies note first that for ε small

there is a mixed-strategy Nash equilibrium in which column plays B with probability

10/(11-13ε) and M with complementary probability; and row plays T and M with these

probabilities.  If payoffs and opponents’ actions are observed and players play these

strategies then the players would learn Nature's distribution, so this is not a self-

confirming equilibrium.

Example B

This example shows that heterogeneity can make a difference even in games

where any SCE with unitary beliefs has beliefs that equal the true distribution.

This is a two-player game without types (equivalently, the type space Θ  consists

of a single point.) Players observe payoffs, but not their opponents' actions.

LL L C R RR

U 1,0 0,0 1,1 0.01,2 0.03,-12

M 1,0 1,0 2,1 0.5,-10 0.6,-11

D 0,0 1,0 1,1 0.04,-13 0.02,2

 The row player plays U only if he believes column plays LL with probability 1,

and D only if he believes column plays L with probability 1.  So in a unitary SCE , row

cannot play both U and D.  If and only if row plays U with sufficiently high probability
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will column play R, which will be known to row (by observing payoffs), and then column

cannot play U.  Similarly RR is ruled out, and both LL and L are strictly dominated, so the

unique unitary SCE is the unique NE (namely M, C).  However, there is a heterogeneous

self-confirming equilibrium in which some row agents play U believing LL, other row

agents play D believing L, the two kind of agents are selected to play with equal

probability, and column plays C.
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