80 research outputs found

    NMR Structure and Dynamics of a Designed Water-Soluble Transmembrane Domain of Nicotinic Acetylcholine Receptor

    Get PDF
    The nicotinic acetylcholine receptor (nAChR) is an important therapeutic target for a wide range of pathophysiological conditions, for which rational drug designs often require receptor structures at atomic resolution. Recent proof-of-concept studies demonstrated a water-solubilization approach to structure determination of membrane proteins by NMR (Slovic et al., PNAS, 101: 1828–1833, 2004; Ma et al., PNAS, 105: 16537–42, 2008). We report here the computational design and experimental characterization of WSA, a water-soluble protein with ~ 83% sequence identity to the transmembrane (TM) domain of the nAChR α1 subunit. Although the design was based on a low-resolution structural template, the resulting high-resolution NMR structure agrees remarkably well with the recent crystal structure of the TM domains of the bacterial Gloeobacter violaceuspentameric ligand-gated ion channel (GLIC), demonstrating the robustness and general applicability of the approach. NMR T2 dispersion measurements showed that the TM2 domain of the designed protein was dynamic, undergoing conformational exchange on the NMR timescale. Photoaffinity labeling with isoflurane and propofol photolabels identified a common binding site in the immediate proximity of the anesthetic binding site found in the crystal structure of the anesthetic-GLIC complex. Our results illustrate the usefulness of high-resolution NMR analyses of water-solubilized channel proteins for the discovery of potential drug binding sites

    Nanomechanical detection of antibiotic-mucopeptide binding in a model for superbug drug resistance

    Full text link
    The alarming growth of the antibiotic-resistant superbugs methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE) is driving the development of new technologies to investigate antibiotics and their modes of action. We report the label-free detection of vancomycin binding to bacterial cell wall precursor analogues (mucopeptides) on cantilever arrays, with 10 nM sensitivity and at clinically relevant concentrations in blood serum. Differential measurements quantified binding constants for vancomycin-sensitive and vancomycin-resistant mucopeptide analogues. Moreover, by systematically modifying the mucopeptide density we gain new insights into the origin of surface stress. We propose that stress is a product of a local chemical binding factor and a geometrical factor describing the mechanical connectivity of regions affected by local binding in terms of a percolation process. Our findings place BioMEMS devices in a new class of percolative systems. The percolation concept will underpin the design of devices and coatings to significantly lower the drug detection limit and may also impact on our understanding of antibiotic drug action in bacteria.Comment: Comments: This paper consists of the main article (6 pages, 5 figures) plus Supplemental Material (6 pages, 3 figures). More details are available at http://www.london-nano.co

    Nano-enabled bioanalytical approaches to ultrasensitive detection of low abundance single nucleotide polymorphisms

    Get PDF
    Single nucleotide polymorphisms (SNPs) constitute the most common types of genetic variations in the human genome. A number of SNPs have been linked to the development of life threatening diseases including cancer, cardiovascular diseases and neurodegenerative diseases. The ability for ultrasensitive and accurate detection of low abundant disease-related SNPs in bodily fluids (e.g. blood, serum, etc.) holds a significant value in the development of non-invasive future biodiagnostic tools. Over the past two decades, nanomaterials have been utilized in a myriad of biosensing applications due to their ability of detecting extremely low quantities of biologically important biomarkers with high sensitivity and accuracy. Of particular interest is the application of such technologies in the detection of SNPs. The use of various nanomaterials, coupled with different powerful signal amplification strategies, has paved the way for a new generation of ultrasensitive SNP biodiagnostic assays. Over the past few years, several ultrasensitive SNP biosensors capable of detecting specific targets down to the ultra-low regimes (ca. aM and below) and therefore holding great promises for early clinical diagnosis of diseases have been developed. This mini review will highlight some of the most recent, significant advances in nanomaterial-based ultrasensitive SNP sensing technologies capable of detecting specific targets on the attomolar (10-18 M) regime or below. In particular, the design of novel, powerful signal amplification strategies that hold the key to the ultrasensitivity is highlighted

    Research on Meshing Characteristics of Shearer Walking Wheel Based on Rigid-Flexible Coupling

    No full text
    Frequent failure of the walking wheel seriously restricts the performance of the whole shearer. To reduce the failure rate and improve the working performance of the walking wheel, the meshing characteristics of the tooth pin are researched. The dynamic state equations of the walking wheel and the contact force model of tooth pin meshing are established. The rigid-flexible coupling simulation model of tooth pin meshing is built. The load distribution characteristics of the walking wheel are analyzed, as well as the effects of impact load amplitude and duration. Results show that the curve of the longitudinal load distribution coefficient (Kβ) of the contact area is W-shaped, with a maximum of 1.325 at the moment of a single tooth contact. The end of the transition curve is the most serious position of the longitudinal load imbalance at the tooth root. In addition, on the impact moment, Kβ tends to decrease and maximum stress obviously increases with the increase in impact load under 40%; the material at the contact position will fail under an extra 39% instantaneous impact load. Furthermore, with the impact load of 30%, the influence of load impact duration under 0.5 s on the meshing characteristics of the walking wheel is relatively faint. The results provide some guidance for the design optimization of the walking wheel and provide a reference for improving the reliability of the shearer
    corecore