12 research outputs found

    Metabolism Links Bacterial Biofilms and Colon Carcinogenesis

    Get PDF
    Bacterial biofilms in the colon alter the host tissue microenvironment. A role for biofilms in colon cancer metabolism has been suggested but to date has not been evaluated. Using metabolomics, we investigated the metabolic influence that microbial biofilms have on colon tissues and the related occurrence of cancer. Patient-matched colon cancers and histologically normal tissues, with or without biofilms, were examined. We show the upregulation of polyamine metabolites in tissues from cancer hosts with significant enhancement of N(1), N(12)-diacetylspermine in both biofilm-positive cancer and normal tissues. Antibiotic treatment, which cleared biofilms, decreased N(1), N(12)-diacetylspermine levels to those seen in biofilm-negative tissues, indicating that host cancer and bacterial biofilm structures contribute to the polyamine metabolite pool. These results show that colonic mucosal biofilms alter the cancer metabolome to produce a regulator of cellular proliferation and colon cancer growth potentially affecting cancer development and progression

    Patients with familial adenomatous polyposis harbor colonic biofilms containing tumorigenic bacteria

    No full text
    Contains fulltext : 183987pub.pdf (publisher's version ) (Closed access

    High-resolution bacterial 16S rRNA gene profile meta-analysis and biofilm status reveal common colorectal cancer consortia

    Get PDF
    Bowel cancer: Spotlight of suspicion on bacteria Many studies have found a link between gut microbes and bowel cancer, the third most common cancer worldwide. The details of the association, however, have remained elusive. Researchers in the USA and Malaysia, led by Dr. Cynthia Sears at John Hopkins School of Medicine in Maryland, examined mucosal biofilm status by fluorescence microscopy and performed a meta-analysis of bacterial genetic associations in stool and colon tissues to clarify the connection. They found that bowel cancers were enriched in invasive bacterial biofilms as well as several specific gut and oral species, including one - Fusobacterium nucleatum - known to promote tumorigenesis in mouse models. Analyzing gut microbial populations might help assess bowel cancer risk. Further research is needed, however, to determine if these  bacteria directly contribute to disease causality

    Bacteroides fragilis Toxin Coordinates a Pro-carcinogenic Inflammatory Cascade via Targeting of Colonic Epithelial Cells

    No full text
    Pro-carcinogenic bacteria have the potential to initiate and/or promote colon cancer, in part via immune mechanisms that are incompletely understood. Using ApcMin mice colonized with the human pathobiont enterotoxigenic Bacteroides fragilis (ETBF) as a model of microbe-induced colon tumorigenesis, we show that the Bacteroides fragilis toxin (BFT) triggers a pro-carcinogenic, multi-step inflammatory cascade requiring IL-17R, NF-κB, and Stat3 signaling in colonic epithelial cells (CECs). Although necessary, Stat3 activation in CECs is not sufficient to trigger ETBF colon tumorigenesis. Notably, IL-17-dependent NF-κB activation in CECs induces a proximal to distal mucosal gradient of C-X-C chemokines, including CXCL1, that mediates the recruitment of CXCR2-expressing polymorphonuclear immature myeloid cells with parallel onset of ETBF-mediated distal colon tumorigenesis. Thus, BFT induces a pro-carcinogenic signaling relay from the CEC to a mucosal Th17 response that results in selective NF-κB activation in distal colon CECs, which collectively triggers myeloid-cell-dependent distal colon tumorigenesis
    corecore