1,565 research outputs found

    The Ursinus Weekly, February 22, 1915

    Get PDF
    The week of prayer • Valentine fete successfully held • Some points about Southern colleges for women • From the sick room • Washington\u27s rules of behavior • Quartet will sing • Glee Club at Boyertown • Among the colleges • Moravian college team victor • Calendarhttps://digitalcommons.ursinus.edu/weekly/2654/thumbnail.jp

    The Ursinus Weekly, March 1, 1915

    Get PDF
    Freshman contest unusually good • Interest keen in baseball activities • Representative of Ursinus selected • Some points about Southern colleges for women • Varsity wins and loses • Literary societies • Group notes • Modern language group meeting • Lecture by Dr. McFarland • Governor Hodges speakshttps://digitalcommons.ursinus.edu/weekly/2655/thumbnail.jp

    Nuclear reactor power as applied to a space-based radar mission

    Get PDF
    The SP-100 Project was established to develop and demonstrate feasibility of a space reactor power system (SRPS) at power levels of 10's of kilowatts to a megawatt. To help determine systems requirements for the SRPS, a mission and spacecraft were examined which utilize this power system for a space-based radar to observe moving objects. Aspects of the mission and spacecraft bearing on the power system were the primary objectives of this study; performance of the radar itself was not within the scope. The study was carried out by the Systems Design Audit Team of the SP-100 Project

    Design and evaluation of a subcutaneous contraceptive implant training simulator

    Full text link
    ObjectiveTo design and fabricate a subcutaneous contraceptive implant insertion simulator, and to characterize the performance of nursing students trained with and without the simulator.MethodA cross‐sectional study was conducted on nursing students in Ghana who had no previous training in the insertion of contraceptive implants. They were given standardized training in insertion of implants from 25 April to 26 April, 2016, and then were randomly assigned to an intervention or control group. The control group watched insertions of live implants while the intervention group practiced using the simulator. Local materials were used to fabricate the simulator. The performance of both groups was assessed after the training.ResultsThe participants consisted of 50 nursing students. Those in the intervention group were more likely to: insert the implant accurately (95.2% vs 78.4%, P<0.001); take less time to complete an insertion (mean of 33.6 seconds vs 42.2 seconds, P<0.001); and commit fewer errors (1.9 vs 2.5, P=0.005) compared to the control group. In addition, participants rated the simulator high on 11/11 of the product requirements with the teaching (93.2%), learning (91.4%), and skill acquisition (88.6%) requirements being the highest rated.ConclusionA low‐cost, locally fabricated simulator is an effective tool for augmenting the current training protocol by improving insertion skills of contraceptive implants.Novices trained with the implant insertion simulator were able to perform error‐free simulated insertions more accurately and quickly compared with the current mode of training.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/151337/1/ijgo12896_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/151337/2/ijgo12896.pd

    Sequencing, identification and mapping of primed L1 elements (SIMPLE) reveals significant variation in full length L1 elements between individuals

    Get PDF
    Background: There are over a half a million copies of L1 retroelements in the human genome which are responsible for as much as 0.5% of new human genetic diseases. Most new L1 inserts arise from young source elements that are polymorphic in the human genome. Highly active polymorphic “hot” L1 source elements have been shown to be capable of extremely high levels of mobilization and result in numerous instances of disease. Additionally, hot polymorphic L1s have been described to be highly active within numerous cancer genomes. These hot L1s result in mutagenesis by insertion of new L1 copies elsewhere in the genome, but also have been shown to generate additional full length L1 insertions which are also hot and able to further retrotranspose. Through this mechanism, hot L1s may amplify within a tumor and result in a continued cycle of mutagenesis. Results and conclusions We have developed a method to detect full-length, polymorphic L1 elements using a targeted next generation sequencing approach, Sequencing Identification and Mapping of Primed L1 Elements (SIMPLE). SIMPLE has 94% sensitivity and detects nearly all full-length L1 elements in a genome. SIMPLE will allow researchers to identify hot mutagenic full-length L1s as potential drivers of genome instability. Using SIMPLE we find that the typical individual has approximately 100 non-reference, polymorphic L1 elements in their genome. These elements are at relatively low population frequencies relative to previously identified polymorphic L1 elements and demonstrate the tremendous diversity in potentially active L1 elements in the human population. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1374-y) contains supplementary material, which is available to authorized users

    Alu fossil relics - distribution and insertion polymorphism

    Get PDF
    Screening of a human genomic library with an oligonucleotide probe specific for one of the young subfamilies of Alu repeats (Ya5/8) resulted in the identification of several hundred positive clones. Thirty-three of these clones were analyzed in detail by DNA sequencing. Oligonucleotide primers complementary to the unique sequence regions flanking each Alu repeat were used in PCR-based assays to perform phylogenetic analyses, chromosomal localization, and insertion polymorphism analyses within different human population groups. All 33 Alu repeats were present only in humans and absent from orthologous positions in several nonhuman primate genomes. Seven Alu repeats were polymorphic for their presence/absence in three different human population groups, making them novel identical-by-descent markers for the analysis of human genetic diversity and evolution. Nucleotide sequence analysis of the polymorphic Alu repeats showed an extremely low nucleotide diversity compared with the subfamily consensus sequence with an average age of 1.63 million years old. The young Alu insertions do not appear to accumulate preferentially on any individual human chromosome

    Identification and Characterization of AES-135, a Hydroxamic Acid-Based HDAC Inhibitor That Prolongs Survival in an Orthotopic Mouse Model of Pancreatic Cancer

    Get PDF
    Pancreatic ductal adenocarcinoma (PDAC) is an aggressive, incurable cancer with a 20% 1 year survival rate. While standard-of-care therapy can prolong life in a small fraction of cases, PDAC is inherently resistant to current treatments, and novel therapies are urgently required. Histone deacetylase (HDAC) inhibitors are effective in killing pancreatic cancer cells in in vitro PDAC studies, and although there are a few clinical studies investigating combination therapy including HDAC inhibitors, no HDAC drug or combination therapy with an HDAC drug has been approved for the treatment of PDAC. We developed an inhibitor of HDACs, AES-135, that exhibits nanomolar inhibitory activity against HDAC3, HDAC6, and HDAC11 in biochemical assays. In a three-dimensional coculture model, AES-135 kills low-passage patient-derived tumor spheroids selectively over surrounding cancer-associated fibroblasts and has excellent pharmacokinetic properties in vivo. In an orthotopic murine model of pancreatic cancer, AES-135 prolongs survival significantly, therefore representing a candidate for further preclinical testing
    corecore