70 research outputs found

    Metabolic fingerprinting of chorionic villous samples in normal pregnancy and chromosomal disorders

    Get PDF
    Placenta-related biological samples are used in biomedical research to investigate placental development. Metabolomics represents a promising approach for studying placental metabolism in an effort to explain physiological and pathological mechanisms. The aim of this study was to investigate metabolic changes in chorionic villi during the first trimester of pregnancy in euploid and aneuploid cases

    The Forkhead Transcription Factor Foxl2 Is Sumoylated in Both Human and Mouse: Sumoylation Affects Its Stability, Localization, and Activity

    Get PDF
    The FOXL2 forkhead transcription factor is expressed in ovarian granulosa cells, and mutated FOXL2 causes the blepharophimosis, ptosis and epicanthus inversus syndrome (BPES) and predisposes to premature ovarian failure. Inactivation of Foxl2 in mice demonstrated its indispensability for female gonadal sex determination and ovary development and revealed its antagonism of Sox9, the effector of male testis development. To help to define the regulatory activities of FOXL2, we looked for interacting proteins. Based on yeast two-hybrid screening, we found that FOXL2 interacts with PIAS1 and UBC9, both parts of the sumoylation machinery. We showed that human FOXL2 is sumoylated in transfected cell lines, and that endogenous mouse Foxl2 is comparably sumoylated. This modification changes its cellular localization, stability and transcriptional activity. It is intriguing that similar sumoylation and regulatory consequences have also been reported for SOX9, the male counterpart of FOXL2 in somatic gonadal tissues

    Analyzing BioRad-Illumina Single Cell RNA-Seq data with open source tools

    Get PDF
    Single cell RNA-Seq is a powerful technique that is becoming more popular since it enables to sequence the transcriptome of each cell within a population of different cell types in a single experiment. Currently, there are a few different technologies, like BioRad-Illumina ddSeq and 10X Chromium

    Identification of miRNAs of Strongyloides stercoralis L1 and iL3 larvae isolated from human stool

    Get PDF
    Strongyloidiasis is a neglected tropical disease caused by the soil-transmitted nematode by Strongyloides stercoralis, that affects approximately 600 million people worldwide. In immunosuppressed individuals disseminated strongyloidiasis can rapidly lead to fatal outcomes. There is no gold standard for diagnosing strongyloidiasis, and infections are frequently misdiagnosed. A better understanding of the molecular biology of this parasite can be useful for example for the discovery of potential new biomarkers. Interestingly, recent evidence showed the presence of small RNAs in Strongyloididae, but no data was provided for S. stercoralis. In this study, we present the first identification of miRNAs of both L1 and iL3 larval stages of S. stercoralis. For our purpose, the aims were: (i) to analyse the miRNome of L1 and iL3 S. stercoralis and to identify potential miRNAs of this nematode, (ii) to obtain the mRNAs profiles in these two larval stages and (iii) to predict potential miRNA target sites in mRNA sequences. Total RNA was isolated from L1 and iL3 collected from the stool of 5 infected individuals. For the miRNAs analysis, we used miRDeep2 software and a pipeline of bio-informatic tools to construct a catalog of a total of 385 sequences. Among these, 53% were common to S. ratti, 19% to S. papillosus, 1% to Caenorhabditis elegans and 44% were novel. Using a differential analysis between the larval stages, we observed 6 suggestive modulated miRNAs (STR-MIR-34A-3P, STR-MIR-8397-3P, STR-MIR-34B-3P and STR-MIR-34C-3P expressed more in iL3, and STR-MIR-7880H-5P and STR-MIR-7880M-5P expressed more in L1). Along with this analysis, we obtained also the mRNAs profiles in the same samples of larvae. Multiple testing found 81 statistically significant mRNAs of the total 1553 obtained (FDR < 0.05; 32 genes expressed more in L1 than iL3; 49 genes expressed more in L3 than iL1). Finally, we found 33 predicted mRNA targets of the modulated miRNAs, providing relevant data for a further validation to better understand the role of these small molecules in the larval stages and their valuein clinical diagnostics

    Crosstalk between Metabolic Alterations and Altered Redox Balance in PTC-Derived Cell Lines.

    Get PDF
    Background: Thyroid cancer is the most common endocrine malignancy, with papillary thyroid carcinoma (PTC) being the most common (85⁻90%) among all the different types of thyroid carcinomas. Cancer cells show metabolic alterations and, due to their rapid proliferation, an accumulation of reactive oxygen species, playing a fundamental role in cancer development and progression. Currently, the crosstalk among thyrocytes metabolism, redox balance and oncogenic mutations remain poorly characterized. The aim of this study was to investigate the interplay among metabolic alterations, redox homeostasis and oncogenic mutations in PTC-derived cells. Methods: Metabolic and redox profile, glutamate-cysteine ligase, glutaminase-1 and metabolic transporters were evaluated in PTC-derived cell lines with distinguished genetic background (TPC-1, K1 and B-CPAP), as well as in an immortalized thyroid cell line (Nthy-ori3-1) selected as control. Results: PTC-derived cells, particularly B-CPAP cells, harboring BRAF, TP53 and human telomerase reverse transcriptase (hTERT) mutation, displayed an increase of metabolites and transporters involved in energetic pathways. Furthermore, all PTC-derived cells showed altered redox homeostasis, as reported by the decreased antioxidant ratios, as well as the increased levels of intracellular oxidant species. Conclusion: Our findings confirmed the pivotal role of the metabolism and redox state regulation in the PTC biology. Particularly, the most perturbed metabolic phenotypes were found in B-CPAP cells, which are characterized by the most aggressive genetic background

    Association Between Sex Hormone Levels and Clinical Outcomes in Patients With COVID-19 Admitted to Hospital: An Observational, Retrospective, Cohort Study

    Get PDF
    Understanding the cause of sex disparities in COVID-19 outcomes is a major challenge. We investigate sex hormone levels and their association with outcomes in COVID-19 patients, stratified by sex and age. This observational, retrospective, cohort study included 138 patients aged 18 years or older with COVID-19, hospitalized in Italy between February 1 and May 30, 2020. The association between sex hormones (testosterone, estradiol, progesterone, dehydroepiandrosterone) and outcomes (ARDS, severe COVID-19, in-hospital mortality) was explored in 120 patients aged 50 years and over. STROBE checklist was followed. The median age was 73.5 years [IQR 61, 82]; 55.8% were male. In older males, testosterone was lower if ARDS and severe COVID-19 were reported than if not (3.6 vs. 5.3 nmol/L, p =0.0378 and 3.7 vs. 8.5 nmol/L, p =0.0011, respectively). Deceased males had lower testosterone (2.4 vs. 4.8 nmol/L, p =0.0536) and higher estradiol than survivors (40 vs. 24 pg/mL, p = 0.0006). Testosterone was negatively associated with ARDS (OR 0.849 [95% CI 0.734, 0.982]), severe COVID-19 (OR 0.691 [95% CI 0.546, 0.874]), and in-hospital mortality (OR 0.742 [95% CI 0.566, 0.972]), regardless of potential confounders, though confirmed only in the regression model on males. Higher estradiol was associated with a higher probability of death (OR 1.051 [95% CI 1.018, 1.084]), confirmed in both sex models. In males, higher testosterone seems to be protective against any considered outcome. Higher estradiol was associated with a higher probability of death in both sexes.The research was funded by Italian Ministry of Health “Fondi Ricerca Corrente, Project L1P5” for IRCCS Sacro Cuore Don Calabria Hospital. The funding source had no role in the collection, analysis, or interpretation of data, the study design, or the writing of the paper.Peer reviewe
    corecore