404 research outputs found
Verification of polarising optics for the LISA optical bench
The Laser Interferometer Space Antenna (LISA) is a spacebased interferometric gravitational wave detector. In the current baseline design for the optical bench, the use of polarising optics is foreseen to separate optical beams. Therefore it is important to investigate the influence of polarising components on the interferometer sensitivity and validate that the required picometre stability in the low-frequency band (1 mHz - 1 Hz) is achievable. This paper discusses the design of the experiment and the implemented stabilisation loops. A displacement readout fulfilling the requirement in the whole frequency band is presented. Alternatively, we demonstrate improvement of the noise performance by implementing various algorithms in data post-processing, which leads to an additional robustness for the LISA mission
The one-round Voronoi game replayed
We consider the one-round Voronoi game, where player one (``White'', called
``Wilma'') places a set of n points in a rectangular area of aspect ratio r
<=1, followed by the second player (``Black'', called ``Barney''), who places
the same number of points. Each player wins the fraction of the board closest
to one of his points, and the goal is to win more than half of the total area.
This problem has been studied by Cheong et al., who showed that for large
enough and r=1, Barney has a strategy that guarantees a fraction of 1/2+a,
for some small fixed a.
We resolve a number of open problems raised by that paper. In particular, we
give a precise characterization of the outcome of the game for optimal play: We
show that Barney has a winning strategy for n>2 and r>sqrt{2}/n, and for n=2
and r>sqrt{3}/2. Wilma wins in all remaining cases, i.e., for n>=3 and
r<=sqrt{2}/n, for n=2 and r<=sqrt{3}/2, and for n=1. We also discuss complexity
aspects of the game on more general boards, by proving that for a polygon with
holes, it is NP-hard to maximize the area Barney can win against a given set of
points by Wilma.Comment: 14 pages, 6 figures, Latex; revised for journal version, to appear in
Computational Geometry: Theory and Applications. Extended abstract version
appeared in Workshop on Algorithms and Data Structures, Springer Lecture
Notes in Computer Science, vol.2748, 2003, pp. 150-16
Distance Oracles for Time-Dependent Networks
We present the first approximate distance oracle for sparse directed networks
with time-dependent arc-travel-times determined by continuous, piecewise
linear, positive functions possessing the FIFO property.
Our approach precomputes approximate distance summaries from
selected landmark vertices to all other vertices in the network. Our oracle
uses subquadratic space and time preprocessing, and provides two sublinear-time
query algorithms that deliver constant and approximate
shortest-travel-times, respectively, for arbitrary origin-destination pairs in
the network, for any constant . Our oracle is based only on
the sparsity of the network, along with two quite natural assumptions about
travel-time functions which allow the smooth transition towards asymmetric and
time-dependent distance metrics.Comment: A preliminary version appeared as Technical Report ECOMPASS-TR-025 of
EU funded research project eCOMPASS (http://www.ecompass-project.eu/). An
extended abstract also appeared in the 41st International Colloquium on
Automata, Languages, and Programming (ICALP 2014, track-A
Mass customization of teaching and learning in organizations
In search of methods that improve the efficiency of teaching and training in organizations, several authors point out that mass customization (MC) is a principle that covers individual needs of knowledge and skills and, at the same time, limits the development costs of customized training to those of mass training. MC is proven and established in the economic sector, and shows high potential for continuing education, too. The paper explores this potential and proposes a multidisciplinary, pragmatic approach to teaching and training in organizations. The first section of the paper formulates four design principles of MC deduced from an examination of economics literature. The second section presents amitâ„¢, a frame for mass customized training, designed according to the principles presented in the first section. The evaluation results encourage the further development and use of mass customized training in continuing education, and offer suggestions for future research
Immune Enhancement of Skin Carcinogenesis by CD4+ T Cells
In a transgenic model of multi-stage squamous carcinogenesis induced by human papillomavirus (HPV) oncogenes, infiltrating CD4+ T cells can be detected in both premalignant and malignant lesions. The lymph nodes that drain sites of epidermal neoplasia contain activated CD4+ T cells predominantly reactive toward Staphylococcal bacterial antigens. HPV16 mice deficient in CD4+ T cells were found to have delayed neoplastic progression and a lower incidence of tumors. This delay in carcinogenesis is marked by decreased infiltration of neutrophils, and reduced activity of matrix metalloproteinase-9, an important cofactor for tumor progression in this model. The data reveal an unexpected capability of CD4 T cells, whereby, proinflammatory CD4+ T cells, apparently responding to bacterial infection of dysplastic skin lesions, can inadvertently enhance neoplastic progression to invasive cancer
Subset feedback vertex set is fixed parameter tractable
The classical Feedback Vertex Set problem asks, for a given undirected graph
G and an integer k, to find a set of at most k vertices that hits all the
cycles in the graph G. Feedback Vertex Set has attracted a large amount of
research in the parameterized setting, and subsequent kernelization and
fixed-parameter algorithms have been a rich source of ideas in the field.
In this paper we consider a more general and difficult version of the
problem, named Subset Feedback Vertex Set (SUBSET-FVS in short) where an
instance comes additionally with a set S ? V of vertices, and we ask for a set
of at most k vertices that hits all simple cycles passing through S. Because of
its applications in circuit testing and genetic linkage analysis SUBSET-FVS was
studied from the approximation algorithms perspective by Even et al.
[SICOMP'00, SIDMA'00].
The question whether the SUBSET-FVS problem is fixed-parameter tractable was
posed independently by Kawarabayashi and Saurabh in 2009. We answer this
question affirmatively. We begin by showing that this problem is
fixed-parameter tractable when parametrized by |S|. Next we present an
algorithm which reduces the given instance to 2^k n^O(1) instances with the
size of S bounded by O(k^3), using kernelization techniques such as the
2-Expansion Lemma, Menger's theorem and Gallai's theorem. These two facts allow
us to give a 2^O(k log k) n^O(1) time algorithm solving the Subset Feedback
Vertex Set problem, proving that it is indeed fixed-parameter tractable.Comment: full version of a paper presented at ICALP'1
Therapies with CCL25 require controlled release via microparticles to avoid strong inflammatory reactions
Background: Chemokine therapy with C-C motif chemokine ligand 25 (CCL25) is currently under investigation as a promising approach to treat articular cartilage degeneration. We developed a delayed release mechanism based on Poly (lactic-co-glycolic acid) (PLGA) microparticle encapsulation for intraarticular injections to ensure prolonged release of therapeutic dosages. However, CCL25 plays an important role in immune cell regulation and inflammatory processes like T-cell homing and chronic tissue inflammation. Therefore, the potential of CCL25 to activate immune cells must be assessed more thoroughly before further translation into clinical practice. The aim of this study was to evaluate the reaction of different immune cell subsets upon stimulation with different dosages of CCL25 in comparison to CCL25 released from PLGA particles.
Results: Immune cell subsets were treated for up to 5 days with CCL25 and subsequently analyzed regarding their cytokine secretion, surface marker expression, polarization, and migratory behavior. The CCL25 receptor C-C chemokine receptor type 9 (CCR9) was expressed to a different extent on all immune cell subsets. Direct stimulation of peripheral blood mononuclear cells (PBMCs) with high dosages of CCL25 resulted in strong increases in the secretion of monocyte chemoattractant protein-1 (MCP-1), interleukin-8 (IL-8), interleukin-1 beta (IL-1 beta), tumor-necrosis-factor-alpha (TNF-alpha) and interferon-gamma (IFN-gamma), upregulation of human leukocyte antigen-DR (HLA-DR) on monocytes and CD4(+) T-cells, as well as immune cell migration along a CCL25 gradient. Immune cell stimulation with the supernatants from CCL25 loaded PLGA microparticles caused moderate increases in MCP-1, IL-8, and IL-1 beta levels, but no changes in surface marker expression or migration. Both CCL25-loaded and unloaded PLGA microparticles induced an increase in IL-8 and MCP-1 release in PBMCs and macrophages, and a slight shift of the surface marker profile towards the direction of M2-macrophage polarization.
Conclusions: While supernatants of CCL25 loaded PLGA microparticles did not provoke strong inflammatory reactions, direct stimulation with CCL25 shows the critical potential to induce global inflammatory activation of human leukocytes at certain concentrations. These findings underline the importance of a safe and reliable release system in a therapeutic setup. Failure of the delivery system could result in strong local and systemic inflammatory reactions that could potentially negate the benefits of chemokine therapy
HIV decline in Zimbabwe due to reductions in risky sex? Evidence from a comprehensive epidemiological review.
Published versio
- …