75 research outputs found

    New Developments in the SCIAMACHY Level 2 Ground Processor Towards Version 7

    Get PDF
    SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric ChartographY) aboard ESA’s environmental satellite ENVISAT observed the Earth’s atmosphere in limb, nadir, and solar/lunar occultation geometries covering the UV-Visible to NIR spectral range. It is a joint project of Germany, the Netherlands and Belgium and was launched in February 2002. SCIAMACHY doubled its originally planned in-orbit lifetime of five years before the communication to ENVISAT was severed in April 2012, and the mission entered its post-operational phase. In order to preserve the best quality of the outstanding data recorded by SCIAMACHY, data processors are still being updated. This presentation will highlight three new developments that are currently being incorporated into the forthcoming Version 7 of ESA’s operational Level 2 processor: 1. Tropospheric BrO, a new retrieval based on the scientific algorithm of (Theys et al., 2011). This algorithm had originally been developed for the GOME-2 sensor and was later adapted for SCIAMACHY. 2. Improved cloud flagging using limb measurements (Liebing, 2015). Limb cloud flags are already part of the SCIAMACHY L2 product. They are currently calculated employing the scientific algorithm developed by (Eichmann et al., 2015). Clouds are categorized into four types: water, ice, polar stratospheric and noctilucent clouds. High atmospheric aerosol loadings, however, often lead to spurious cloud flags, when aerosols had been misidentified as clouds. The new algorithm will better discriminate between aerosol and clouds. It will also have a higher sensitivity w.r.t. thin clouds. 3. A new, future-proof file format for the level 2 product based on NetCDF. The data format will be aligned and harmonized with other missions, particularly GOME and Sentinels. The final concept for the new format is still under discussion within the SCIAMACHY Quality Working Group

    The Global Ozone Monitoring Experiment: Review of in-flight performance and new reprocessed 1995-2011 level 1 product

    Get PDF
    The Global Ozone Monitoring Experiment (GOME) on-board the second European Remote Sensing satellite provided measurements of atmospheric constituents such as ozone or other trace gases for the 16 year period from 1995 to 2011. In this paper we present a detailed analysis of the long-term performance of the sensor and introduce the new homogenized and fully calibrated level 1 product which has been generated using the recently developed GOME Data Processor level-0-to-1b (GDP-L1) Version 5.1. By means of the various in-flight calibration parameters we monitor the behavior and stability of the instrument during the entire mission. Severe degradation of the optical components has led to a significant decrease in intensity in particular in channels 1 and 2 covering the spectral ranges of 240–316 nm and 311–405 nm, respectively. Thus, a soft correction based on using the sun as a stable calibration source is applied. Revision and optimization of other calibration algorithms such as the wavelength assignment, polarization correction, or dark current correction resulted in an improved and homogeneous level 1 product that can be regarded as the European satellite reference data for successor atmospheric composition sensors and that provides an excellent prerequisite for further exploitation of GOME measurements

    Long-term validation of MIPAS ESA operational products using MIPAS-B measurements

    Get PDF
    The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) was a limb-viewing infrared Fourier transform spectrometer that operated from 2002 to 2012 aboard the Environmental Satellite (ENVISAT). The final re-processing of the full MIPAS mission Level 2 data was performed with the ESA operational version 8 (v8) processor. This MIPAS dataset includes not only the retrieval results of pressure–temperature and the standard species H2O, O3, HNO3, CH4, N2O, and NO2 but also vertical profiles of volume mixing ratios of the more difficult-to-retrieve molecules N2O5, ClONO2, CFC-11, CFC-12 (included since v6 processing), HCFC-22, CCl4, CF4, COF2, and HCN (included since v7 processing). Finally, vertical profiles of the species C2H2, C2H6, COCl2, OCS, CH3Cl, and HDO were additionally retrieved by the v8 processor. The balloon-borne limb-emission sounder MIPAS-B was a precursor of the MIPAS satellite instrument. Several flights with MIPAS-B were carried out during the 10-year operational phase of ENVISAT at different latitudes and seasons, including both operational periods when MIPAS measured with full spectral resolution (FR mode) and with optimised spectral resolution (OR mode). All MIPAS operational products (except HDO) were compared to results inferred from dedicated validation limb sequences of MIPAS-B. To enhance the statistics of vertical profile comparisons, a trajectory match method has been applied to search for MIPAS coincidences along the 2 d forward and backward trajectories running from the MIPAS-B measurement geolocations. This study gives an overview of the validation results based on the ESA operational v8 data comprising the MIPAS FR and OR observation periods. This includes an assessment of the data agreement of both sensors, taking into account the combined errors of the instruments. The differences between the retrieved temperature profiles of both MIPAS instruments generally stays within ±2 K in the stratosphere. For most gases – namely H2O, O3, HNO3, CH4, N2O, NO2, N2O5, ClONO2, CFC-11, CFC-12, HCFC-22, CCl4, CF4, COF2, and HCN – we find a 5 %–20 % level of agreement for the retrieved vertical profiles of both MIPAS instruments in the lower stratosphere. For the species C2H2, C2H6, COCl2, OCS, and CH3Cl, however, larger differences (within 20 %–50 %) appear in this altitude range

    SCIAMACHY: The new Level 0-1 Processor

    Get PDF
    SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY) is a scanning nadir and limb spectrometer covering the wavelength range from 212 nm to 2386 nm in 8 channels. It is a joint project of Germany, the Netherlands and Belgium and was launched in February 2002 on the ENVISAT platform. After the platform failure in April 2012, SCIAMACHY is now in the postprocessing phase F. SCIAMACHY�s originally specified in-orbit lifetime was double the planned lifetime. SCIAMACHY was designed to measure column densities and vertical profiles of trace gas species in the mesosphere, in the stratosphere and in the troposphere (Bovensmann et al., 1999). It can detect a large amount of atmospheric gases (e.g. O3 , H2CO, CHOCHO, SO2 , BrO, OClO, NO2 , H2O, CO, CH4 , among others ) and can provide information about aerosols and clouds. The operational processing of SCIAMACHY is split into Level 0-1 processing (essentially providing calibrated radiances) and Level 1-2 processing providing geophysical products. The operational Level 0-1 processor has been completely re-coded and embedded in a newly developed framework that speeds up processing considerably. In the frame of the SCIAMACHY Quality Working Group activities, ESA is continuing the improvement of the archived data sets. Currently Version 9 of the Level 0-1 processor is being implemented. It will include An updated degradation correction Several improvements in the SWIR spectral range like a better dark correction, an improved dead & bad pixel characterisation and an improved spectral calibration Improvements to the polarisation correction algorithm Improvements to the geolocation by a better pointing characterisation Additionally a new format for the Level 1b and Level 1c will be implemented. The version 9 products will be available in netCDF version 4 that is aligned with the formats of the GOME -1 and Sentinel missions. We will present the first results of the new Level 0-1 processing in this paper

    The FDR4ATMOS Project

    Get PDF
    The FDR4ATMOS project has two main tasks. The focus of task A is to update the SCIAMACHY processing chain for better Ozone total columns. After the full re-processing of the SCIAMACHY mission with processor versions 9 (Level 1) and version 7 (Level 2), the comparison with ground-based data showed that the total Ozone column showed a downward trend of nearly 2% from the beginning of the time series to its end. This trend is an artefact and is likely caused by changes made to the calibration algorithms in the Level 1 processor (the DOAS retrieval algorithm for Ozone was not changed). The most likely reason are changes in the degradation correction that lead to subtle changes in the spectral structures that in the retrieval are interpreted as an atmospheric signature. In task A we will update the Level 0-1 processor with the final aim of a mission re-processing. The second task in the FDR4ATMOS project is to develop a cross-instrument Level 1 product for GOME-1 and SCIAMACHY for the UV, VIS and NIR spectral range with a focus on the spectral windows used for O3, SO2, NO2 total column retrieval and the determination of cloud properties. Contrary to other projects, FDR4ATMOS does not aim to build a harmonised time series on Level 2 products but on Level 1 products, i.e. radiances and reflectances. The GOME-1 and SCIAMACHY instrument together span 17 years of spectrally highly resolved data. The goal of the FDR4ATMOS project is to generate harmonised data sets that allow the user to use it directly in long term trend analysis, independent of the instrument. Since this was never done for highly resolved spectrometers, new methods have to be developed that e.g. take into account the different observation geometries and observation times of the instrument without impacting the spectral structures that are used for the retrieval of the atmospheric species. The resulting algorithms and the processor should also be as generic as possible to be able to transfer the methodology easily to other instruments (e.g. GOME-2, Sentinel-5p) for a future extension of the time series. The FDR4ATMOS started in October 2019 and is currently in phase 1. We will present the goals of the project and first results

    Intercomparison of low- and high-resolution infrared spectrometers for ground-based solar remote sensing measurements of total column concentrations of CO2, CH4, and CO

    Get PDF
    The Total Carbon Column Observing Network (TCCON) is the baseline ground-based network of instruments that record solar absorption spectra from which accurate and precise column-averaged dry-air mole fractions of CO2_{2} (XCO2_{2}), CH4_{4} (XCH4_{4}), CO (XCO), and other gases are retrieved. The TCCON data have been widely used for carbon cycle science and validation of satellites measuring greenhouse gas concentrations globally. The number of stations in the network (currently about 25) is limited and has a very uneven geographical coverage: the stations in the Northern Hemisphere are distributed mostly in North America, Europe, and Japan, and only 20 % of the stations are located in the Southern Hemisphere, leaving gaps in the global coverage. A denser distribution of ground-based solar absorption measurements is needed to improve the representativeness of the measurement data for various atmospheric conditions (humid, dry, polluted, presence of aerosol), various surface conditions such as high albedo (>0.4) and very low albedo, and a larger latitudinal distribution. More stations in the Southern Hemisphere are also needed, but a further expansion of the network is limited by its costs and logistical requirements. For this reason, several groups are investigating supplemental portable low-cost instruments. The European Space Agency (ESA) funded campaign Fiducial Reference Measurements for Ground-Based Infrared Greenhouse Gas Observations (FRM4GHG) at the Sodankylä TCCON site in northern Finland aims to characterise the assessment of several low-cost portable instruments for precise solar absorption measurements of XCO2_{2}, XCH4_{4}, and XCO. The test instruments under investigation are three Fourier transform spectrometers (FTSs): a Bruker EM27/SUN, a Bruker IRcube, and a Bruker Vertex70, as well as a laser heterodyne spectroradiometer (LHR) developed by the UK Rutherford Appleton Laboratory. All four remote sensing instruments performed measurements simultaneously next to the reference TCCON instrument, a Bruker IFS 125HR, for a full year in 2017. The TCCON FTS was operated in its normal high-resolution mode (TCCON data set) and in a special low-resolution mode (HR125LR data set), similar to the portable spectrometers. The remote sensing measurements are complemented by regular AirCore launches performed from the same site. They provide in situ vertical profiles of the target gas concentrations as auxiliary reference data for the column retrievals, which are traceable to the WMO SI standards. The reference measurements performed with the Bruker IFS 125HR were found to be affected by non-linearity of the indium gallium arsenide (InGaAs) detector. Therefore, a non-linearity correction of the 125HR data was performed for the whole campaign period and compared with the test instruments and AirCore. The non-linearity-corrected data (TCCONmod data set) show a better match with the test instruments and AirCore data compared to the non-corrected reference data. The time series, the bias relative to the reference instrument and its scatter, and the seasonal and the day-to-day variations of the target gases are shown and discussed. The comparisons with the HR125LR data set gave a useful analysis of the resolution-dependent effects on the target gas retrieval. The solar zenith angle dependence of the retrievals is shown and discussed. The intercomparison results show that the LHR data have a large scatter and biases with a strong diurnal variation relative to the TCCON and other FTS instruments. The LHR is a new instrument under development, and these biases are currently being investigated and addressed. The campaign helped to characterise and identify instrumental biases and possibly retrieval biases, which are currently under investigation. Further improvements of the instrument are ongoing. The EM27/SUN, the IRcube, the modified Vertex70, and the HR125LR provided stable and precise measurements of the target gases during the campaign with quantified small biases. The bias dependence on the humidity along the measurement line of sight has been investigated and no dependence was found. These three portable low-resolution FTS instruments are suitable to be used for campaign deployment or long-term measurements from any site and offer the ability to complement the TCCON and expand the global coverage of ground-based reference measurements of the target gases

    Intercomparison of low- and high-resolution infrared spectrometers for ground-based solar remote sensing measurements of total column concentrations of CO2, CH4, and CO

    Get PDF
    The Total Carbon Column Observing Network (TCCON) is the baseline ground-based network of instruments that record solar absorption spectra from which accurate and precise column-averaged dry-air mole fractions of CO2_{2} (XCO2_{2}), CH4_{4} (XCH4_{4}), CO (XCO), and other gases are retrieved. The TCCON data have been widely used for carbon cycle science and validation of satellites measuring greenhouse gas concentrations globally. The number of stations in the network (currently about 25) is limited and has a very uneven geographical coverage: the stations in the Northern Hemisphere are distributed mostly in North America, Europe, and Japan, and only 20 % of the stations are located in the Southern Hemisphere, leaving gaps in the global coverage. A denser distribution of ground-based solar absorption measurements is needed to improve the representativeness of the measurement data for various atmospheric conditions (humid, dry, polluted, presence of aerosol), various surface conditions such as high albedo (>0.4) and very low albedo, and a larger latitudinal distribution. More stations in the Southern Hemisphere are also needed, but a further expansion of the network is limited by its costs and logistical requirements. For this reason, several groups are investigating supplemental portable low-cost instruments. The European Space Agency (ESA) funded campaign Fiducial Reference Measurements for Ground-Based Infrared Greenhouse Gas Observations (FRM4GHG) at the Sodankylä TCCON site in northern Finland aims to characterise the assessment of several low-cost portable instruments for precise solar absorption measurements of XCO2_{2}, XCH4_{4}, and XCO. The test instruments under investigation are three Fourier transform spectrometers (FTSs): a Bruker EM27/SUN, a Bruker IRcube, and a Bruker Vertex70, as well as a laser heterodyne spectroradiometer (LHR) developed by the UK Rutherford Appleton Laboratory. All four remote sensing instruments performed measurements simultaneously next to the reference TCCON instrument, a Bruker IFS 125HR, for a full year in 2017. The TCCON FTS was operated in its normal high-resolution mode (TCCON data set) and in a special low-resolution mode (HR125LR data set), similar to the portable spectrometers. The remote sensing measurements are complemented by regular AirCore launches performed from the same site. They provide in situ vertical profiles of the target gas concentrations as auxiliary reference data for the column retrievals, which are traceable to the WMO SI standards. The reference measurements performed with the Bruker IFS 125HR were found to be affected by non-linearity of the indium gallium arsenide (InGaAs) detector. Therefore, a non-linearity correction of the 125HR data was performed for the whole campaign period and compared with the test instruments and AirCore. The non-linearity-corrected data (TCCONmod data set) show a better match with the test instruments and AirCore data compared to the non-corrected reference data. The time series, the bias relative to the reference instrument and its scatter, and the seasonal and the day-to-day variations of the target gases are shown and discussed. The comparisons with the HR125LR data set gave a useful analysis of the resolution-dependent effects on the target gas retrieval. The solar zenith angle dependence of the retrievals is shown and discussed. The intercomparison results show that the LHR data have a large scatter and biases with a strong diurnal variation relative to the TCCON and other FTS instruments. The LHR is a new instrument under development, and these biases are currently being investigated and addressed. The campaign helped to characterise and identify instrumental biases and possibly retrieval biases, which are currently under investigation. Further improvements of the instrument are ongoing. The EM27/SUN, the IRcube, the modified Vertex70, and the HR125LR provided stable and precise measurements of the target gases during the campaign with quantified small biases. The bias dependence on the humidity along the measurement line of sight has been investigated and no dependence was found. These three portable low-resolution FTS instruments are suitable to be used for campaign deployment or long-term measurements from any site and offer the ability to complement the TCCON and expand the global coverage of ground-based reference measurements of the target gases

    SCIAMACHY: Level 0-1 Processor V9 and Phase F Re-processing

    Get PDF
    SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY) is a scanning nadir and limb spectrometer covering the wavelength range from 212 nm to 2386 nm in 8 channels. It is a joint project of Germany, the Netherlands and Belgium and was launched in February 2002 on the ENVISAT platform. After the platform failure in April 2012, SCIAMACHY is now in the postprocessing phase F. Its originally specified in-orbit lifetime was double the planned lifetime. SCIAMACHY was designed to measure column densities and vertical profiles of trace gas species in the mesosphere, in the stratosphere and in the troposphere (Bovensmann et al., 1999). It can detect a large amount of atmospheric gases (e.g. O3 , H2CO, CHOCHO, SO2 , BrO, OClO, NO2 , H2O, CO, CH4 , among others ) and can provide information about aerosols and clouds. The operational processing of SCIAMACHY is split into Level 0-1 processing (essentially providing calibrated radiances) and Level 1-2 processing providing geophysical products. The operational Level 0-1 processor has been completely re-coded and embedded in a newly developed framework that speeds up processing considerably. In the frame of the SCIAMACHY Quality Working Group activities, ESA is continuing the improvement of the archived data sets. Version 9 of the Level 0-1 processor includes - An updated degradation correction - Improvements to the polarisation correction algorithm - Improvements to the geolocation by a better pointing characterisation - Several improvements in the SWIR spectral range like a better dark correction, an improved dead & bad pixel characterisation and an improved spectral calibration The new format for the Level 1b and Level 1c will be netCDF V4. We will present the verification results and the results of the mission re-processing

    The ESA MIPAS/Envisat level2-v8 dataset: 10 years of measurements retrieved with ORM v8.22

    Get PDF
    The observations acquired during the full mission of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) instrument, aboard the European Space Agency Environmental Satellite (Envisat), have been analysed with version 8.22 of the Optimised Retrieval Model (ORM), originally developed as the scientific prototype of the ESA level-2 processor for MIPAS observations. The results of the analyses have been included into the MIPAS level-2 version 8 (level2-v8) database containing atmospheric fields of pressure, temperature, and volume mixing ratio (VMR) of MIPAS main targets H2_{2}O, O3_{3}, HNO3_{3}, CH4_{4}, N2_{2}O, and NO2_{2}, along with the minor gases CFC-11, ClONO2_{2}, N2_{2}O5_{5}, CFC-12, COF2_{2}, CCl4_{4}, CF4_{4}, HCFC-22, C2_{2}H2_{2}, CH3_{3}Cl, COCl2_{2}, C2_{2}H6_{6}, OCS, and HDO. The database covers all the measurements acquired by MIPAS in the nominal measurement mode of the full resolution (FR) part of the mission (from July 2002 to March 2004) and all the observation modes of the optimised resolution (OR) part (from January 2005 to April 2012). The number of species included in the MIPAS level2-v8 dataset makes it of particular importance for the studies of stratospheric chemistry. The database is considered by ESA the final release of the MIPAS level-2 products. The ORM algorithm is operated at the vertical grid coincident to the tangent altitudes of the observations or to a subset of them, spanning (in the nominal mode) the altitude range from 6 to 68 km in the FR phase and from 6 to 70 km in the OR period. In the latitude domain, FR profiles are spaced by about 4.7∘, while the OR profiles are spaced by about 3.7∘. For each retrieved species, the auxiliary data and the retrieval choices are described. Each product is characterised in terms of the retrieval error, spatial resolution, and “useful” vertical range in both phases of the MIPAS mission. These depend on the characteristics of the measurements (spectral and vertical resolution of the measurements), the retrieval choices (number of spectral points included in the analyses, number of altitudes included in the vertical retrieval grid), and the information content of the measurements for each trace species. For temperature, water vapour, ozone, and nitric acid, the number of degrees of freedom is significantly larger in the OR phase than in the FR one, mainly due to the finer vertical measurement grid. In the FR phase, some trace species are characterised by a smaller retrieval error with respect to the OR phase, mainly due to the larger number of spectral points used in the analyses, along with the reduced vertical resolution. The way of handling possible caveats (negative VMR, vertical grid representation) is discussed. The quality of the retrieved profiles is assessed through four criteria, two providing information on the successful convergence of the retrieval iterations, one on the capability of the retrieval to reproduce the measurements, and one on the presence of outliers. An easy way to identify and filter the problematic profiles with the information contained in the output files is provided. MIPAS level2-v8 data are available to the scientific community through the ESA portal (https://doi.org/10.5270/EN1-c8hgqx4)
    corecore