14 research outputs found

    Multiplex PCR/liquid chromatography assay for detection of gene rearrangements: application to RB1 gene

    No full text
    Screening for large gene rearrangements is established as an important part of molecular medicine but is also challenging. A variety of robust methods can detect whole-gene deletions, but will fail to detect more subtle rearrangements that may involve a single exon. In this paper, we describe a new, versatile and robust method to assess exon copy number, called multiplex PCR/liquid chromatography assay (MP/LC). Multiple exons are amplified using unlabeled primers, then separated by ion-pair reversed-phase high-performance liquid chromatography (IP-RP-HPLC), and quantitated by fluorescent detection using a post-column intercalation dye. The relative peak intensities for each target directly reflect exon copy number. This novel technique was used to screen a panel of 121 unrelated retinoblastoma patients who were tested previously using a reference strategy. MP/LC correctly scored all deletions and demonstrated a previously undetected RB1 duplication, the first to be described. MP/LC appears to be an easy, versatile, and cost-effective method, which is particularly relevant to denaturing HPLC (DHPLC) users since it broadens the spectrum of available applications on a DHPLC system

    Pros and cons of HaloPlex enrichment in cancer predisposition genetic diagnosis

    No full text
    Panel sequencing is a practical option in genetic diagnosis. Enrichment and library preparation steps are critical in the diagnostic setting. In order to test the value of HaloPlex technology in diagnosis, we designed a custom oncogenetic panel including 62 genes. The procedure was tested on a training set of 71 controls and then blindly validated on 48 consecutive hereditary breast/ovarian cancer (HBOC) patients tested negative for BRCA1/2 mutation. Libraries were sequenced on HiSeq2500 and data were analysed with our academic bioinformatics pipeline. Point mutations were detected using Varscan2, median size indels were detected using Pindel and large genomic rearrangements (LGR) were detected by DESeq. Proper coverage was obtained. However, highly variable read depth was observed within genes. Excluding pseudogene analysis, all point mutations were detected on the training set. All indels were also detected using Pindel. On the other hand, DESeq allowed LGR detection but with poor specificity, preventing its use in diagnostics. Mutations were detected in 8% of BRCA1/2-negative HBOC cases. HaloPlex technology appears to be an efficient and promising solution for gene panel diagnostics. Data analysis remains a major challenge and geneticists should enhance their bioinformatics knowledge in order to ensure good quality diagnostic results

    Familial retinoblastoma due to intronic LINE-1 insertion causes aberrant and noncanonical mRNA splicing of the RB1 gene

    No full text
    Retinoblastoma (RB, MIM 180200) is the paradigm of hereditary cancer. Individuals harboring a constitutional mutation in one allele of the RB1 gene have a high predisposition to develop RB. Here, we present the first case of familial RB caused by a de novo insertion of a full-length long interspersed element-1 (LINE-1) into intron 14 of the RB1 gene that caused a highly heterogeneous splicing pattern of RB1 mRNA. LINE-1 insertion was inferred by mRNA studies and full-length sequenced by massive parallel sequencing. Some of the aberrant mRNAs were produced by noncanonical acceptor splice sites, a new finding that up to date has not been described to occur upon LINE-1 retrotransposition. Our results clearly show that RNA-based strategies have the potential to detect disease-causing transposon insertions. It also confirms that the incorporation of new genetic approaches, such as massive parallel sequencing, contributes to characterize at the sequence level these unique and exceptional genetic alterations.This study was funded by grants of the Instituto de Salud Carlos III (PI12/00816 and RTICC RD12/0036/0027). CR-M was supported by a MINNECO contract. FC was supported by Asociación Pablo Ugarte and Miguelañez SA. SM was supported by a CIBERER contract. We greatly appreciate the collaboration of the RB patients, their parents and their families.S

    Parent-of-origin effect of hypomorphic pathogenic variants and somatic mosaicism impact on phenotypic expression of retinoblastoma

    No full text
    Retinoblastoma is the most common eye cancer in children. Numerous families have been described displaying reduced penetrance and expressivity. An extensive molecular characterization of seven families led us to characterize the two main mechanisms impacting on phenotypic expression, as follows: (i) mosaicism of amorphic pathogenic variants; and (ii) parent-of-origin-effect of hypomorphic pathogenic variants. Somatic mosaicism for RB1 splicing variants (c.1960+5G>C and c.2106+2T>C), leading to a complete loss of function was demonstrated by high-depth NGS in two families. In both cases, the healthy carrier parent (one with retinoma) showed a variant frequency lower than that expected for a heterozygous individual, indicating a 56-60% mosaicism level. Previous evidences of a ~3-fold excess of RB1 maternal canonical transcript led us to hypothesize that this differential allelic expression could influence phenotypic outcome in families at risk for RB onset. Accordingly, in five families, we identified a higher tumor risk associated with paternally inherited hypomorphic pathogenic variants, namely a deletion resulting in the loss of 37 amino acids at the N-terminus (c.608-16_608del), an exonic substitution with a "leaky" splicing effect (c.1331A>G), a partially deleterious substitution (c.1981C>T) and a truncating C-terminal variant (c.2663+2T>C). The identification of these mechanisms changes the genetic/prenatal counseling and the clinical management of families, indicating a higher recurrence risk when the hypomorphic pathogenic variant is inherited from the father, and suggesting the need for second tumor surveillance in unaffected carriers at risk of developing adult-onset cancer such as osteosarcoma or leiomyosarcoma
    corecore