9 research outputs found
Lack of group X secreted phospholipase A<sub>2</sub> increases survival following pandemic H1N1 influenza infection
The role of Group X secreted phospholipase A2 (GX-sPLA2) during influenza infection has not been previously investigated. We examined the role of GX-sPLA2 during H1N1 pandemic influenza infection in a GX-sPLA2 gene targeted mouse (GX−/−) model and found that survival after infection was significantly greater in GX−/− mice than in GX+/+ mice. Downstream products of GX-sPLA2 activity, PGD2, PGE2, LTB4, cysteinyl leukotrienes and Lipoxin A4 were significantly lower in GX−/− mice BAL fluid. Lung microarray analysis identified an earlier and more robust induction of T and B cell associated genes in GX−/− mice. Based on the central role of sPLA2 enzymes as key initiators of inflammatory processes, we propose that activation of GX-sPLA2 during H1N1pdm infection is an early step of pulmonary inflammation and its inhibition increases adaptive immunity and improves survival. Our findings suggest that GX-sPLA2 may be a potential therapeutic target during influenza
Self-renewing resident arterial macrophages arise from embryonic CX3CR1+ precursors and circulating monocytes immediately after birth
Resident macrophages densely populate the normal arterial wall, yet their origins and the mechanisms that sustain them are poorly understood. Here we use gene-expression profiling to show that arterial macrophages constitute a distinct population among macrophages. Using multiple fate-mapping approaches, we show that arterial macrophages arise embryonically from CX3CR1+ precursors and postnatally from bone marrow–derived monocytes that colonize the tissue immediately after birth. In adulthood, proliferation (rather than monocyte recruitment) sustains arterial macrophages in the steady state and after severe depletion following sepsis. After infection, arterial macrophages return rapidly to functional homeostasis. Finally, survival of resident arterial macrophages depends on a CX3CR1-CX3CL1 axis within the vascular niche
c-Myb Exacerbates Atherosclerosis through Regulation of Protective IgM-Producing Antibody-Secreting Cells
Summary: Mechanisms that govern transcriptional regulation of inflammation in atherosclerosis remain largely unknown. Here, we identify the nuclear transcription factor c-Myb as an important mediator of atherosclerotic disease in mice. Atherosclerosis-prone animals fed a diet high in cholesterol exhibit increased levels of c-Myb in the bone marrow. Use of mice that either harbor a c-Myb hypomorphic allele or where c-Myb has been preferentially deleted in B cell lineages revealed that c-Myb potentiates atherosclerosis directly through its effects on B lymphocytes. Reduced c-Myb activity prevents the expansion of atherogenic B2 cells yet associates with increased numbers of IgM-producing antibody-secreting cells (IgM-ASCs) and elevated levels of atheroprotective oxidized low-density lipoprotein (OxLDL)-specific IgM antibodies. Transcriptional profiling revealed that c-Myb has a limited effect on B cell function but is integral in maintaining B cell progenitor populations in the bone marrow. Thus, targeted disruption of c-Myb beneficially modulates the complex biology of B cells in cardiovascular disease. : Shikatani et al. demonstrate that the nuclear transcription factor c-Myb exacerbates experimental atherosclerosis directly through its effects on B lymphocytes. Paradoxically, c-Myb promotes B2 cell development yet limits numbers of IgM-producing antibody-secreting cells and levels of atheroprotective OxLDL-specific IgM antibodies