35 research outputs found

    Permanent or reversible conjugation of 2′-O- or 5′-O-aminooxymethylated nucleosides with functional groups as a convenient and efficient approach to the modification of RNA and DNA sequences

    Get PDF
    2′-O-Aminooxymethyl ribonucleosides are prepared from their 3′,5′-disilylated 2′-O-phthalimidooxymethyl derivatives by treatment with NH4F in MeOH. The reaction of these novel ribonucleosides with 1-pyrenecarboxaldehyde results in the efficient formation of stable and yet reversible ribonucleoside 2′-conjugates in yields of 69–82%. Indeed, exposure of these conjugates to 0.5 M tetra-n-butylammonium fluoride (TBAF) in THF results in the cleavage of their iminoether functions to give the native ribonucleosides along with the innocuous nitrile side product. Conversely, the reaction of 5-cholesten-3-one or dansyl chloride with 2′-O-aminooxymethyl uridine provides permanent uridine 2′-conjugates, which are left essentially intact upon treatment with TBAF. Alternatively, 5′-O-aminooxymethyl thymidine is prepared by hydrazinolysis of its 3′-O-levulinyl-5′-O-phthalimidooxymethyl precursor. Pyrenylation of 5′-O-aminooxymethyl thymidine and the sensitivity of the 5′-conjugate to TBAF further exemplify the usefulness of this nucleoside for modifying DNA sequences either permanently or reversibly. Although the versatility and uniqueness of 2′-O-aminooxymethyl ribonucleosides in the preparation of modified RNA sequences is demonstrated by the single or double incorporation of a reversible pyrenylated uridine 2′-conjugate into an RNA sequence, the conjugation of 2′-O-aminooxymethyl ribonucleosides with aldehydes, including those generated from their acetals, provides reversible 2′-O-protected ribonucleosides for potential applications in the solid-phase synthesis of native RNA sequences. The synthesis of a chimeric polyuridylic acid is presented as an exemplary model

    Family Business Restructuring:A Review and Research Agenda

    Get PDF
    Although business restructuring occurs frequently and it is important for the prosperity of family firms across generations, research on family firms has largely evolved separately from research on business restructuring. This is a missed opportunity, since the two domains are complementary, and understanding the context, process, content, and outcome dimensions is relevant to both research streams. We address this by examining the intersection between research on business restructuring and family firms to improve our knowledge of each area and inform future research. To achieve this goal, we review and organize research across different dimensions to create an integrative framework. Building on current research, we focus on 88 studies at the intersection of family firm and business restructuring research to develop a model that identifies research needs and suggests directions for future research

    Effect of sulfate and iron on physico-chemical characteristics of anaerobic granular sludge

    No full text
    This research investigated the effect of the substrate composition (no substrate, glucose, glucose + sulfate or glucose + sulfate + iron) on the physico-chemical characteristics of two different anaerobic granular sludges as a function of time. The sludges were fed batch wise (pH 7, 30 °C) at an organic loading rate of 1.2 g COD l¿1 d¿1 (0.04 g COD g VSS¿1 day¿1) for 30 days. The presence of sulfate (COD/sulfate ratio = 1) in the feed of glucose fed anaerobic sludges did not change the physico-chemical characteristics throughout the incubation. In contrast, the presence of iron in the feed (in addition to glucose and sulfate, COD/iron ratio = 1) reduced the protein and carbohydrate content in the SMP and EPS with about 50% after 30 days incubation compared to the other feeding conditions. The sludge grown on glucose + sulfate + iron contained much more iron (+300¿500%) and sulfur (+200¿350%) than the other incubated sludges both after 14 and 30 days. The higher mineral content (lower VSS content) and the decrease of the EPS content contributed to the disintegration of iron fed granules, as shown by their lower size particles. However, the iron fed sludge displayed a higher granule strength than the other incubated sludges. Although an appreciable variation in the granule strength was noticed between the sludges investigated, it was not possible to relate these differences to their inorganic composition, the chemical composition of the extracted polymers or to the physical characteristics investigate

    Negative SPR Signals during Low Molecular Weight Analyte Recognition

    No full text
    International audienc

    Influence of the SPR experimental conditions on the G-quadruplex DNA recognition by porphyrin derivatives

    No full text
    International audienceSurface plasmon resonance (SPR) is a powerful technique to study the interactions of ligands with analytes and therefore a number of biosensor surfaces and injection methods have been developed so far. However, many experimental parameters can affect the interactions and consequently the affinity measurements. In particular, the interactions of positively charged analytes (often used for anionic nucleic acids targets) can be influenced by the sensing surfaces (e.g., negatively charged), leading to significant nonspecific interactions as well as regeneration problems. The aim of the present work is to investigate the effect of different parameters, including ionic strength, SPR biosensor (i.e., nature of the surfaces), and the injection method on the recognition of porphyrin G-quadruplex ligands. We demonstrate that the injection method does not influence the affinity whereas the ionic strength and the nature of the surface impact the recognition properties of the porphyrin for the G-quadruplex DNA. We also found that self-assembled monolayer coating surface presents many advantages in comparison with carboxymethylated dextran surface for SPR studies of G-quadruplex DNA/ligand interactions: (i) the electrostatic interaction with charged analytes is less important, (ii) its structure/composition is less sensitive to the ionic concentration and less prone to unspecific adsorption, (iii) it is easily homemade, and (iv) the cost is approximately 10 times cheaper

    Oligonucleotide Functionalization of Hollow Triangular Gold Silver Alloy Nanoboxes

    No full text
    Triangular AuAg nanoboxes functionalized with short DNA molecules (oligodeoxynucleotides, ODNs) have been prepared and their properties compared to those formed from spherical gold particles. The nanoboxes, produced from triangular silver nanoplates (TSNPs) by reduction of AuCl<sub>4</sub><sup>–</sup> with ascorbic acid, have been further characterized by EDS mapping and HAADF-STEM measurements. Both AuAg nanoboxes and gold spherical nanoparticles were functionalized with thiol-terminated single-stranded ODNs or their complementary ODN sequences. When the complementary AuAg nanobox–ODN conjugates were combined they were observed to form networks, with the localized surface plasmon resonance (LSPR) band undergoing a red shift and a significant dampening. This assembly process was reversible upon heating and the systems showed sharp melting transitions, which could be monitored at wavelengths throughout the visible and near-IR. Finally, assemblies of the triangular nanoboxes and spherical nanoparticles have been generated
    corecore