13 research outputs found

    Critical Role of Transcript Cleavage in Arabidopsis RNA Polymerase II Transcriptional Elongation

    Get PDF
    Transcript elongation factors associate with elongating RNA polymerase II (RNAPII) to control the efficiency of mRNA synthesis and consequently modulate plant growth and development. Encountering obstacles during transcription such as nucleosomes or particular DNA sequences may cause backtracking and transcriptional arrest of RNAPII. The elongation factor TFIIS stimulates the intrinsic transcript cleavage activity of the polymerase, which is required for efficient rescue of backtracked/arrested RNAPII. A TFIIS mutant variant (TFIISmut) lacks the stimulatory activity to promote RNA cleavage, but instead efficiently inhibits unstimulated transcript cleavage by RNAPII. We could not recover viable Arabidopsis (Arabidopsis thaliana) tfIIs plants constitutively expressing TFIISmut. Induced, transient expression of TFIISmut in tfIIs plants provoked severe growth defects, transcriptomic changes and massive, transcription-related redistribution of elongating RNAPII within transcribed regions toward the transcriptional start site. The predominant site of RNAPII accumulation overlapped with the 11 nucleosome, suggesting that upon inhibition of RNA cleavage activity, RNAPII arrest prevalently occurs at this position. In the presence of TFIISmut, the amount of RNAPII was reduced, which could be reverted by inhibiting the proteasome, indicating proteasomal degradation of arrested RNAPII. Our findings suggest that polymerase backtracking/arrest frequently occurs in plant cells, and RNAPII-reactivation is essential for correct transcriptional output and proper growth/development

    Molecular mechanisms of translation initiation of the genomic RNA of HIV-1

    No full text
    L’ARN gĂ©nomique du virus de l’immunodĂ©ficience humaine de type 1 (VIH-1) est multifonctionnel et suit au moins deux destins. Soit il est traduit par la machinerie traductionnelle de l’hĂŽte donnant naissance aux polyprotĂ©ines Gag et Gag-pol, soit il se dimĂ©rise et est encapsidĂ© dans les virions en tant que gĂ©nome viral. Les travaux du laboratoire visent Ă  identifier les mĂ©canismes molĂ©culaires de la traduction de l’ARN gĂ©nomique et de sa dimĂ©risation, ainsi que les dĂ©terminants gouvernant la balance entre ces deux phĂ©nomĂšnes. La traduction de l’ARN gĂ©nomique viral peut ĂȘtre initiĂ©e de trois façons. Selon le mĂ©canisme canonique nĂ©cessitant la prĂ©sence d’une coiffe Ă  l’extrĂ©mitĂ© 5’ de l’ARN, et grĂące Ă  deux sites d’initiation par entrĂ©e interne des ribosomes (IRES). Un IRES a Ă©tĂ© mis en Ă©vidence dans la 5’ UTR, dont l’activitĂ© est stimulĂ©e lors en phase G2/M du cycle cellulaire uniquement. Un second IRES a Ă©tĂ© dĂ©couvert dans la rĂ©gion codante de gag. Il est capable de lier directement la petite sous-unitĂ© ribosome et le facteur d’initiation eIF3, et permet l’initiation Ă  partir de deux codons AUG situĂ©s dans la mĂȘme phase de lecture, conduisant Ă  la synthĂšse d’une isoforme additionnelle de Gag. Mon projet de thĂšse a consistĂ© en l’étude de l’influence de la structure secondaire sur la traduction et la dimĂ©risation. Dans un premier temps, j’ai mis en place au laboratoire une nouvelle technique de sondage de structure, appelĂ©e « SHAPE », dĂ©veloppĂ©e par le laboratoire de K. Weeks. Le SHAPE nous permet dĂ©sormais de sonder rapidement la structure secondaire de nombreux ARN, et notamment de tester en routine l’effet de mutations sur la structure secondaire. Cette technique a permis d’étudier la structure secondaire de la 5’ UTR dans diffĂ©rentes conditions. Nous avons ainsi identifiĂ© une signature de la conformation monomĂšre de la 5 UTR, et dĂ©couvert un nouvel Ă©lĂ©ment impliquĂ© dans la dimĂ©risation in vitro. Par ailleurs, nous avons montrĂ© que des extraits de cellules Hela synchronisĂ©es en phase G2/M du cycle cellulaire stimulent l’activitĂ© de l’IRES de la 5’ UTR et modifient le profil de rĂ©activitĂ© de cette rĂ©gion, traduisant probablement une rĂ©organisation structurale induite par le recrutement de protĂ©ines cellulaires. Une autre partie de mon projet de thĂšse a concernĂ© l’étude de l’IRES de la rĂ©gion codante de gag, Des dĂ©lĂ©tions progressives de l’IRES, Ă  partir des extrĂ©mitĂ©s 5’ et 3’ ont mis en Ă©vidence l’existence de deux sites de liaison distincts au ribosome, localisĂ©s Ă  proximitĂ© de chacun des deux codons d’initiation. La dĂ©lĂ©tion de chaque site a permis de confirmer le rĂŽle de la liaison directe au ribosome dans la traduction de gag. L’ensemble de ces Ă©lĂ©ments nous permet de proposer un modĂšle molĂ©culaire conduisant Ă  la formation des complexes d’initiation sur chaque codon AUG. Par ailleurs, nos rĂ©sultats suggĂšrent qu’une interaction longue-distance entre la boucle PolyA et la rĂ©gion codante de gag rĂ©gule de la traduction de l’ARN gĂ©nomique. Un tel mĂ©canisme pourrait permettre de rĂ©guler l’efficacitĂ© de traduction du gĂšne gag, voire du ratio entre les deux isoformes au cours du cycle rĂ©plicatif.Primate lentiviruses genomic RNA can serve both as an mRNA that encodes for Gag and Gag-Pol polyproteins and as a propagated genome. We previously reported the presence of an IRES activity embedded within Gag coding region itself that drives the production of several isoforms of the Gag polyprotein and that is conserved in HIV-1, HIV-2 and SIVmac. In addition, in vitro reconstitution experiments revealed that the initial step of initiation complex formation is the recruitment of the 40S ribosomal subunit and eIF3. The structural and functional conservation amongst lentiviruses indicates that those properties are important for the virus cycle. In order to define the RNA structural determinants responsible for the formation of IRES/eIF3/40S ternary complex, we have been following functional and biochemical approaches in parallel. Our results indicate that 2 distinct binding sites for the ribosome are present close to the 2 AUG codons used as initiation site for the translation. Further biochemical analyses have shown that 2 ribosomes can be recruited by the same RNA molecule. In order to determine the functional role of the IRES activity on gag translation, we assayed in vitro the translation efficiency of mutants unable to recruit the ribosome. In parallel, we have been following a drug screening strategy to identify small molecules that would inhibit the ribosome recruitment. This approach could pave the way to the definition of the IRESgag as a new therapeutic target, and to the identification of new drugs

    Etude des mécanismes moléculaires de l'initiation de la traduction de l'ARN génomique du VIH-1

    No full text
    L ARN gĂ©nomique du virus de l immunodĂ©ficience humaine de type 1 (VIH-1) est multifonctionnel et suit au moins deux destins. Soit il est traduit par la machinerie traductionnelle de l hĂŽte donnant naissance aux polyprotĂ©ines Gag et Gag-pol, soit il se dimĂ©rise et est encapsidĂ© dans les virions en tant que gĂ©nome viral. Les travaux du laboratoire visent Ă  identifier les mĂ©canismes molĂ©culaires de la traduction de l ARN gĂ©nomique et de sa dimĂ©risation, ainsi que les dĂ©terminants gouvernant la balance entre ces deux phĂ©nomĂšnes. La traduction de l ARN gĂ©nomique viral peut ĂȘtre initiĂ©e de trois façons. Selon le mĂ©canisme canonique nĂ©cessitant la prĂ©sence d une coiffe Ă  l extrĂ©mitĂ© 5 de l ARN, et grĂące Ă  deux sites d initiation par entrĂ©e interne des ribosomes (IRES). Un IRES a Ă©tĂ© mis en Ă©vidence dans la 5 UTR, dont l activitĂ© est stimulĂ©e lors en phase G2/M du cycle cellulaire uniquement. Un second IRES a Ă©tĂ© dĂ©couvert dans la rĂ©gion codante de gag. Il est capable de lier directement la petite sous-unitĂ© ribosome et le facteur d initiation eIF3, et permet l initiation Ă  partir de deux codons AUG situĂ©s dans la mĂȘme phase de lecture, conduisant Ă  la synthĂšse d une isoforme additionnelle de Gag. Mon projet de thĂšse a consistĂ© en l Ă©tude de l influence de la structure secondaire sur la traduction et la dimĂ©risation. Dans un premier temps, j ai mis en place au laboratoire une nouvelle technique de sondage de structure, appelĂ©e SHAPE , dĂ©veloppĂ©e par le laboratoire de K. Weeks. Le SHAPE nous permet dĂ©sormais de sonder rapidement la structure secondaire de nombreux ARN, et notamment de tester en routine l effet de mutations sur la structure secondaire. Cette technique a permis d Ă©tudier la structure secondaire de la 5 UTR dans diffĂ©rentes conditions. Nous avons ainsi identifiĂ© une signature de la conformation monomĂšre de la 5 UTR, et dĂ©couvert un nouvel Ă©lĂ©ment impliquĂ© dans la dimĂ©risation in vitro. Par ailleurs, nous avons montrĂ© que des extraits de cellules Hela synchronisĂ©es en phase G2/M du cycle cellulaire stimulent l activitĂ© de l IRES de la 5 UTR et modifient le profil de rĂ©activitĂ© de cette rĂ©gion, traduisant probablement une rĂ©organisation structurale induite par le recrutement de protĂ©ines cellulaires. Une autre partie de mon projet de thĂšse a concernĂ© l Ă©tude de l IRES de la rĂ©gion codante de gag, Des dĂ©lĂ©tions progressives de l IRES, Ă  partir des extrĂ©mitĂ©s 5 et 3 ont mis en Ă©vidence l existence de deux sites de liaison distincts au ribosome, localisĂ©s Ă  proximitĂ© de chacun des deux codons d initiation. La dĂ©lĂ©tion de chaque site a permis de confirmer le rĂŽle de la liaison directe au ribosome dans la traduction de gag. L ensemble de ces Ă©lĂ©ments nous permet de proposer un modĂšle molĂ©culaire conduisant Ă  la formation des complexes d initiation sur chaque codon AUG. Par ailleurs, nos rĂ©sultats suggĂšrent qu une interaction longue-distance entre la boucle PolyA et la rĂ©gion codante de gag rĂ©gule de la traduction de l ARN gĂ©nomique. Un tel mĂ©canisme pourrait permettre de rĂ©guler l efficacitĂ© de traduction du gĂšne gag, voire du ratio entre les deux isoformes au cours du cycle rĂ©plicatif.Primate lentiviruses genomic RNA can serve both as an mRNA that encodes for Gag and Gag-Pol polyproteins and as a propagated genome. We previously reported the presence of an IRES activity embedded within Gag coding region itself that drives the production of several isoforms of the Gag polyprotein and that is conserved in HIV-1, HIV-2 and SIVmac. In addition, in vitro reconstitution experiments revealed that the initial step of initiation complex formation is the recruitment of the 40S ribosomal subunit and eIF3. The structural and functional conservation amongst lentiviruses indicates that those properties are important for the virus cycle. In order to define the RNA structural determinants responsible for the formation of IRES/eIF3/40S ternary complex, we have been following functional and biochemical approaches in parallel. Our results indicate that 2 distinct binding sites for the ribosome are present close to the 2 AUG codons used as initiation site for the translation. Further biochemical analyses have shown that 2 ribosomes can be recruited by the same RNA molecule. In order to determine the functional role of the IRES activity on gag translation, we assayed in vitro the translation efficiency of mutants unable to recruit the ribosome. In parallel, we have been following a drug screening strategy to identify small molecules that would inhibit the ribosome recruitment. This approach could pave the way to the definition of the IRESgag as a new therapeutic target, and to the identification of new drugs.PARIS5-Bibliotheque electronique (751069902) / SudocPARIS-BIUM-Bib. Ă©lectronique (751069903) / SudocSudocFranceF

    An antisense noncoding RNA enhances translation via localized structural rearrangements of its cognate mRNA

    No full text
    Reis RS, Deforges J, Schmidt R, Schippers JHM, Poirier Y. An antisense noncoding RNA enhances translation via localized structural rearrangements of its cognate mRNA. The Plant Cell. 2021;33(4):1381-1397.**Abstract** A large portion of eukaryotic genes are associated with noncoding, natural antisense transcripts (NATs). Despite sharing extensive sequence complementarity with their sense mRNAs, mRNA–NAT pairs elusively often evade dsRNA-cleavage and siRNA-triggered silencing. More surprisingly, some NATs enhance translation of their sense mRNAs by yet unknown mechanism(s). Here, we show that translation enhancement of the rice (Oryza sativa) PHOSPHATE1.2 (PHO1.2) mRNA is enabled by specific structural rearrangements guided by its noncoding antisense RNA (cis-NATpho1.2). Their interaction in vitro revealed no evidence of widespread intermolecular dsRNA formation, but rather specific local changes in nucleotide base pairing, leading to higher flexibility of PHO1.2 mRNA at a key high guanine-cytosineïżœ(GC) regulatory region inhibiting translation, ∌350-nt downstream of the start codon. Sense–antisense RNA interaction increased formation of the 80S complex in PHO1.2, possibly by inducing structural rearrangement within this inhibitory region, thus making this mRNA more accessible to 60S. This work presents a framework for nucleotide resolution studies of functional mRNA–antisense pairs

    Structural Analyses of Avocado sunblotch viroid Reveal Differences in the Folding of Plus and Minus RNA Strands

    Get PDF
    Viroids are small pathogenic circular single-stranded RNAs, present in two complementary sequences, named plus and minus, in infected plant cells. A high degree of complementarities between different regions of the RNAs allows them to adopt complex structures. Since viroids are naked non-coding RNAs, interactions with host factors appear to be closely related to their structural and catalytic characteristics. Avocado sunblotch viroid (ASBVd), a member of the family Avsunviroidae, replicates via a symmetric RNA-dependant rolling-circle process, involving self-cleavage via hammerhead ribozymes. Consequently, it is assumed that ASBVd plus and minus strands adopt similar structures. Moreover, by computer analyses, a quasi-rod-like secondary structure has been predicted. Nevertheless, secondary and tertiary structures of both polarities of ASBVd remain unsolved. In this study, we analyzed the characteristic of each strand of ASBVd through biophysical analyses. We report that ASBVd transcripts of plus and minus polarities exhibit differences in electrophoretic mobility under native conditions and in thermal denaturation profiles. Subsequently, the secondary structures of plus and minus polarities of ASBVd were probed using the RNA-selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) method. The models obtained show that both polarities fold into different structures. Moreover, our results suggest the existence of a kissing-loop interaction within the minus strand that may play a role in in vivo viroid life cycle

    Two ribosome recruitment sites direct multiple translation events within HIV1 Gag open reading frame

    Get PDF
    International audienceIn the late phase of the HIV virus cycle, the full length unspliced genomic RNA is exported to the cytoplasm and serves as mRNA to translate the Gag and Gag-pol polyproteins. Three different translation initiation mechanisms responsible for Gag production have been described. However a rationale for the involvement of as many translation pathways in gRNA translation is yet to be defined. The Gag-IRES has the singularity to be located within the Gag open reading frame and to directly recruit the 40S ribosomal subunit. To further characterize this interaction, we first probed the Gag-IRES RNA structure. We then developed an innovative integrative modelling approach and propose a novel secondary structure model for the Gag-IRES. The minimal 40S ribosomal subunit binding site was further mapped using different assays. To our surprise, we found that at least two regions within Gag-IRES can independently recruit the ribosome. Next, we validated that these two regions influence Gag translation both in vitro and in cellulo. These binding sites are mostly unstructured and highly A-rich, such sequences have previously been shown to be sufficient to recruit the ribosome and to support an IRES function. A combination of biochemical and functional data give insight into the Gag-IRES molecular mechanism and provide compelling evidences for its importance. Hypothesis about its physiological role reflecting its conservation amongst primate lentiviruses are proposed
    corecore