12 research outputs found

    Potential Mercurian Analogues: Aubrite and Enstatite Chondrite Impact Melt Meteorites

    Get PDF
    The MESSENGER (MErcury Surface Space ENvironment GEochemistry and Ranging Spacecraft) mission provided new data that have helped us better constrain the surficial mineralogy and composition of Mercury. Mercury has an extremely low oxygen fugacity (f O2) (Iron Wustite (IW) -7.3 to IW -2.6), and at these unique conditions, elements, which usually exhibit lithophile behavior on Earth, can exhibit chalcophile or siderophile behavior on Mercury. No samples have been returned from Mercury; therefore, we must study candidate meteorite analogs to better understand the formation conditions of minerals inferred to be present at the Mercurian surface and Mercurian magmatic processes. In this study, we present a comprehensive analysis of a representative suite of eight aubrites and four enstatite chondrite impact melts (ECIM), which both have a similar f O2 to Mercury, and contain exotic sulfides that have been inferred to be present at the Mercurian surface. These characteristics allow us to assess their relevance for understanding the mineralogy and magmatic processes of Mercury. The ECIM were previously classified as aubrites, but we show that they are actually ECIM with a potential EH (high enstatite) parent body origin due to the presence of niningerite, Si-enriched kamacite, and uniform Ni in schreibersite. We propose that, with respect to the aubrites, the ECIM represent an ideal candidate for Mercurian studies due to their mineralogy and modal mineralogy. Compared to the aubrites, the ECIM samples do not contain forsterite or diopside, show a poorer sulfide diversity, contain graphite, and have a higher volume percentage of metal phases. Although the Mercurian surface contains forsterite and diopside, graphite and a similar amount of metal and sulfides as seen in the ECIM are inferred to be present on Mercury. According to the calculated normative Mercurian mineralogy, both candidate meteorites are most analogous to the Caloris Basin and Northern Plains Lower Mg regions

    A proposed framework for the development and qualitative evaluation of West Nile virus models and their application to local public health decision-making

    Get PDF
    West Nile virus(WNV) is a globally distributed mosquito-borne virus of great public health concern. The number of WNV human cases and mosquito infection patterns vary in space and time. Many statistical models have been developed to understand and predict WNV geographic and temporal dynamics. However, these modeling efforts have been disjointed with little model comparison and inconsistent validation. In this paper, we describe a framework to unify and standardize WNV modeling efforts nationwide. WNV risk, detection, or warning models for this review were solicited from active research groups working in different regions of the United States. A total of 13 models were selected and described. The spatial and temporal scales of each model were compared to guide the timing and the locations for mosquito and virus surveillance, to support mosquito vector control decisions, and to assist in conducting public health outreach campaigns at multiple scales of decision-making. Our overarching goal is to bridge the existing gap between model development, which is usually conducted as an academic exercise, and practical model applications, which occur at state, tribal, local, or territorial public health and mosquito control agency levels. The proposed model assessment and comparison framework helps clarify the value of individual models for decision-making and identifies the appropriate temporal and spatial scope of each model. This qualitative evaluation clearly identifies gaps in linking models to applied decisions and sets the stage for a quantitative comparison of models. Specifically, whereas many coarse-grained models (county resolution or greater) have been developed, the greatest need is for fine-grained, short-term planning models (m–km, days–weeks) that remain scarce. We further recommend quantifying the value of information for each decision to identify decisions that would benefit most from model input

    Evaluation of an open forecasting challenge to assess skill of West Nile virus neuroinvasive disease prediction

    No full text
    Abstract Background West Nile virus (WNV) is the leading cause of mosquito-borne illness in the continental USA. WNV occurrence has high spatiotemporal variation, and current approaches to targeted control of the virus are limited, making forecasting a public health priority. However, little research has been done to compare strengths and weaknesses of WNV disease forecasting approaches on the national scale. We used forecasts submitted to the 2020 WNV Forecasting Challenge, an open challenge organized by the Centers for Disease Control and Prevention, to assess the status of WNV neuroinvasive disease (WNND) prediction and identify avenues for improvement. Methods We performed a multi-model comparative assessment of probabilistic forecasts submitted by 15 teams for annual WNND cases in US counties for 2020 and assessed forecast accuracy, calibration, and discriminatory power. In the evaluation, we included forecasts produced by comparison models of varying complexity as benchmarks of forecast performance. We also used regression analysis to identify modeling approaches and contextual factors that were associated with forecast skill. Results Simple models based on historical WNND cases generally scored better than more complex models and combined higher discriminatory power with better calibration of uncertainty. Forecast skill improved across updated forecast submissions submitted during the 2020 season. Among models using additional data, inclusion of climate or human demographic data was associated with higher skill, while inclusion of mosquito or land use data was associated with lower skill. We also identified population size, extreme minimum winter temperature, and interannual variation in WNND cases as county-level characteristics associated with variation in forecast skill. Conclusions Historical WNND cases were strong predictors of future cases with minimal increase in skill achieved by models that included other factors. Although opportunities might exist to specifically improve predictions for areas with large populations and low or high winter temperatures, areas with high case-count variability are intrinsically more difficult to predict. Also, the prediction of outbreaks, which are outliers relative to typical case numbers, remains difficult. Further improvements to prediction could be obtained with improved calibration of forecast uncertainty and access to real-time data streams (e.g. current weather and preliminary human cases). Graphical Abstrac

    Sensitive Detection of Minimal Residual Disease in Patients Treated for Early-Stage Breast Cancer

    No full text
    © 2020 American Association for Cancer Research. Purpose: Existing cell-free DNA (cfDNA) methods lack the sensitivity needed for detecting minimal residual disease (MRD) following therapy. We developed a test for tracking hundreds of patient-specific mutations to detect MRD with a 1,000-fold lower error rate than conventional sequencing. Experimental Design: We compared the sensitivity of our approach to digital droplet PCR (ddPCR) in a dilution series, then retrospectively identified two cohorts of patients who had undergone prospective plasma sampling and clinical data collection: 16 patients with ER+/HER2- metastatic breast cancer (MBC) sampled within 6 months following metastatic diagnosis and 142 patients with stage 0 to III breast cancer who received curative-intent treatment with most sampled at surgery and 1 year postoperative. We performed whole-exome sequencing of tumors and designed individualized MRD tests, which we applied to serial cfDNA samples. Results: Our approach was 100-fold more sensitive than ddPCR when tracking 488 mutations, but most patients had fewer identifiable tumor mutations to track in cfDNA (median = 57; range = 2–346). Clinical sensitivity was 81% (n = 13/16) in newly diagnosed MBC, 23% (n = 7/30) at postoperative and 19% (n = 6/32) at 1 year in early-stage disease, and highest in patients with the most tumor mutations available to track. MRD detection at 1 year was strongly associated with distant recurrence [HR = 20.8; 95% confidence interval, 7.3–58.9]. Median lead time from first positive sample to recurrence was 18.9 months (range = 3.4–39.2 months). Conclusions: Tracking large numbers of individualized tumor mutations in cfDNA can improve MRD detection, but its sensitivity is driven by the number of tumor mutations available to track
    corecore