53 research outputs found

    Ca2+ signals in plant immunity

    Get PDF
    Calcium ions function as a key second messenger ion in eukaryotes. Spatially and temporally defined cytoplasmic Ca2+ signals are shaped through the concerted activity of ion channels, exchangers, and pumps in response to diverse stimuli; these signals are then decoded through the activity of Ca2+-binding sensor proteins. In plants, Ca2+ signaling is central to both pattern- and effector-triggered immunity, with the generation of characteristic cytoplasmic Ca2+ elevations in response to potential pathogens being common to both. However, despite their importance, and a long history of scientific interest, the transport proteins that shape Ca2+ signals and their integration remain poorly characterized. Here, we discuss recent work that has both shed light on and deepened the mysteries of Ca2+ signaling in plant immunity

    A phosphoinositide hub connects CLE peptide signaling and polar auxin efflux regulation

    Full text link
    Auxin efflux through plasma-membrane-integral PIN-FORMED (PIN) carriers is essential for plant tissue organization and tightly regulated. For instance, a molecular rheostat critically controls PIN-mediated auxin transport in developing protophloem sieve elements of Arabidopsis roots. Plasma-membrane-association of the rheostat proteins, BREVIS RADIX (BRX) and PROTEIN KINASE ASSOCIATED WITH BRX (PAX), is reinforced by interaction with PHOSPHATIDYLINOSITOL-4-PHOSPHATE-5-KINASE (PIP5K). Genetic evidence suggests that BRX dampens autocrine signaling of CLAVATA3/EMBRYO SURROUNDING REGION-RELATED 45 (CLE45) peptide via its receptor BARELY ANY MERISTEM 3 (BAM3). How excess CLE45-BAM3 signaling interferes with protophloem development and whether it does so directly or indirectly remains unclear. Here we show that rheostat polarity is independent of PIN polarity, but interdependent with PIP5K. Catalytically inactive PIP5K confers rheostat polarity without reinforcing its localization, revealing a possible PIP5K scaffolding function. Moreover, PIP5K and PAX cooperatively control local PIN abundance. We further find that CLE45-BAM3 signaling branches via RLCK-VII/PBS1-LIKE (PBL) cytoplasmic kinases to destabilize rheostat localization. Our data thus reveal antagonism between CLE45-BAM3-PBL signaling and PIP5K that converges on auxin efflux regulation through dynamic control of PAX polarity. Because second-site bam3 mutation suppresses root as well as shoot phenotypes of pip5k mutants, CLE peptide signaling likely modulates phosphoinositide-dependent processes in various developmental contexts

    Conservation of the PBL-RBOH immune module in land plants

    Full text link
    The rapid production of reactive oxygen species (ROS) is a key signaling output in plant immunity. In the angiosperm model species Arabidopsis thaliana (hereafter Arabidopsis), recognition of non- or altered-self elicitor patterns by cell-surface immune receptors activates the receptor-like cytoplasmic kinases (RLCKs) of the AVRPPHB SUSCEPTIBLE 1 (PBS1)-like (PBL) family, particularly BOTRYTIS-INDUCED KINASE1 (BIK1).1^{1},^{,}2^{2},^{,}3^{3} BIK1/PBLs in turn phosphorylate the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase RESPIRATORY BURST OXIDASE HOMOLOG D (RBOHD) to induce apoplastic ROS production.4^{4},^{,}5^{5} PBL and RBOH functions in plant immunity have been extensively characterized in flowering plants. Much less is known about the conservation of pattern-triggered ROS signaling pathways in non-flowering plants. In this study, we show that in the liverwort Marchantia polymorpha (hereafter Marchantia), single members of the RBOH and PBL families, namely MpRBOH1 and MpPBLa, are required for chitin-induced ROS production. MpPBLa directly interacts with and phosphorylates MpRBOH1 at specific, conserved sites within its cytosolic N terminus, and this phosphorylation is essential for chitin-induced MpRBOH1-mediated ROS production. Collectively, our work reveals the functional conservation of the PBL-RBOH module that controls pattern-triggered ROS production in land plants

    Phosphorylation regulates cellulose biosynthesis regulation.

    Get PDF
    Plants comprise over 82% of all biomass on Earth, a third of which is cellulose, making it the most abundant organic compound¹. Cellulose is also essential for plant development and defense against multiple stresses. But, despite its relevance, there remains much to be discovered about its biosynthetic regulation to improve crop’s tolerance to biotic and abiotic stresses. We have described the Tetratricopeptide Thioredoxin‐Like (TTL² proteins as regulators of the cellulose synthase complex (CSC) under cellulose‐deficient conditions³. We found that TTLs are required to maintain cellulose synthesis under salt stress by relocalising from the cytosol to the CSCs, promoting the polymerization of microtubules to form a stress‐resilient cortical microtubule array, and interacting with the CSCs to stabilize them at the plasma membrane. We are currently investigating how TTLs are targeted to the CSCs. We have found that TTL3 is a substrate for a kinase that when mutated show cellulose‐defective phenotypes under stresses that affect cell wall integrity. We are currently analysing how the CSCs and microtubules behave under abiotic stress in mutants for this kinase. This will provide new insights into how changes in phosphorylation status regulate the activity and dynamic localization of these proteins.This work was funded by the Spanish Ministry for Science and Innovation (PID2020-114419RB-I00MCIN/AEI/10.13039/501100011033 ) to MAB. The Andalusian Research Plan co-financed by the European Union (PAIDI 2020- PY20_00084 and UMA20-FEDERJA-023) to MAB. FP was supported by FPU19/02219 fellowships and EMBO Scientific Exchange Grant 10026 and VAS was supported by an Emerging Investigator research project (UMA20-FEDERJA -007) and co-financed by the “Programa Operativo FEDER 2014-2020” and by the “Consejería de Economía y Conocimiento de la Junta de Andalucía”. Funding from the University of Zürich, and the Swiss National Science Foundation grants no. 31003A_182625 and no. 310030_212382 (to CZ). Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Cr RLK 1L receptor‐like kinases HERK 1 and ANJEA are female determinants of pollen tube reception

    Full text link
    Communication between the gametophytes is vital for angiosperm fertilisation. Multiple CrRLK1L‐type receptor kinases prevent premature pollen tube burst, while another CrRLK1L protein, FERONIA (FER), is required for pollen tube reception in the female gametophyte. We report here the identification of two additional CrRLK1L homologues, HERCULES RECEPTOR KINASE 1 (HERK1) and ANJEA (ANJ), which act redundantly to promote pollen tube growth arrest at the synergid cells. HERK1 and ANJ localise to the filiform apparatus of the synergid cells in unfertilised ovules, and in herk1 anj mutants, a majority of ovules remain unfertilised due to pollen tube overgrowth, together indicating that HERK1 and ANJ act as female determinants for fertilisation. As in fer mutants, the synergid cell‐specific, endomembrane protein NORTIA (NTA) is not relocalised after pollen tube reception; however, unlike fer mutants, reactive oxygen species levels are unaffected in herk1 anj double mutants. Both ANJ and HERK1 associate with FER and its proposed co‐receptor LORELEI (LRE) in planta. Together, our data indicate that HERK1 and ANJ act with FER to mediate female–male gametophyte interactions during plant fertilisation

    Conservation of the PBL-RBOH immune module in land plants

    Get PDF
    The rapid production of reactive oxygen species (ROS) is a key signaling output in plant immunity. In the angiosperm model species Arabidopsis thaliana (hereafter Arabidopsis), recognition of non- or altered-self elicitor patterns by cell-surface immune receptors activates the receptor-like cytoplasmic kinases (RLCKs) of the AVRPPHB SUSCEPTIBLE 1 (PBS1)-like (PBL) family, particularly BOTRYTIS-INDUCED KINASE1 (BIK1).1,2,3 BIK1/PBLs in turn phosphorylate the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase RESPIRATORY BURST OXIDASE HOMOLOG D (RBOHD) to induce apoplastic ROS production.4,5 PBL and RBOH functions in plant immunity have been extensively characterized in flowering plants. Much less is known about the conservation of pattern-triggered ROS signaling pathways in non-flowering plants. In this study, we show that in the liverwort Marchantia polymorpha (hereafter Marchantia), single members of the RBOH and PBL families, namely MpRBOH1 and MpPBLa, are required for chitin-induced ROS production. MpPBLa directly interacts with and phosphorylates MpRBOH1 at specific, conserved sites within its cytosolic N terminus, and this phosphorylation is essential for chitin-induced MpRBOH1-mediated ROS production. Collectively, our work reveals the functional conservation of the PBL-RBOH module that controls pattern-triggered ROS production in land plants

    Direct inhibition of phosphate transport by immune signaling in Arabidopsis

    Get PDF
    Soil availability of inorganic ortho-phosphate (PO 4 3−, P i) is a key determinant of plant growth and fitness. 1 Plants regulate the capacity of their roots to take up inorganic phosphate by adapting the abundance of H +-coupled phosphate transporters of the PHOSPHATE TRANSPORTER 1 (PHT1) family 2 at the plasma membrane (PM) through transcriptional and post-translational changes driven by the genetic network of the phosphate starvation response (PSR). 3–8 Increasing evidence also shows that plants integrate immune responses to alleviate phosphate starvation stress through the association with beneficial microbes. 9–11 Whether and how such phosphate transport is regulated upon activation of immune responses is yet uncharacterized. To address this question, we first developed quantitative assays based on changes in the electrical PM potential to measure active P i transport in roots in real time. By inserting micro-electrodes into bulging root hairs, we were able to determine key characteristics of phosphate transport in intact Arabidopsis thaliana (hereafter Arabidopsis) seedlings. The fast P i-induced depolarization observed was dependent on the activity of the major phosphate transporter PHT1;4. Notably, we observed that this PHT1;4-mediated phosphate uptake is repressed upon activation of pattern-triggered immunity. This inhibition depended on the receptor-like cytoplasmic kinases BOTRYTIS-INDUCED KINASE 1 (BIK1) and PBS1-LIKE KINASE 1 (PBL1), which both phosphorylated PHT1;4. As a corollary to this negative regulation of phosphate transport by immune signaling, we found that PHT1;4-mediated phosphate uptake normally negatively regulates anti-bacterial immunity in roots. Collectively, our results reveal a mechanism linking plant immunity and phosphate homeostasis, with BIK1/PBL1 providing a molecular integration point between these two important pathways

    Regulation of immune receptor kinase plasma membrane nanoscale organization by a plant peptide hormone and its receptors

    Get PDF
    Spatial partitioning is a propensity of biological systems orchestrating cell activities in space and time. The dynamic regulation of plasma membrane nano-environments has recently emerged as a key fundamental aspect of plant signaling, but the molecular components governing it are still mostly unclear. The receptor kinase FERONIA (FER) controls ligand-induced complex formation of the immune receptor kinase FLAGELLIN SENSING 2 (FLS2) with its co-receptor BRASSINOSTEROID-INSENSITIVE 1-ASSOCIATED KINASE 1 (BAK1), and perception of the endogenous peptide hormone RAPID ALKALANIZATION FACTOR 23 (RALF23) by FER inhibits immunity. Here, we show that FER regulates the plasma membrane nanoscale organization of FLS2 and BAK1. Our study demonstrates that akin to FER, leucine-rich repeat (LRR) extensin proteins (LRXs) contribute to RALF23 responsiveness and regulate BAK1 nanoscale organization and immune signaling. Furthermore, RALF23 perception leads to rapid modification of FLS2 and BAK1 nanoscale organization, and its inhibitory activity on immune signaling relies on FER kinase activity. Our results suggest that perception of RALF peptides by FER and LRXs actively modulates plasma membrane nanoscale organization to regulate cell surface signaling by other ligand-binding receptor kinases

    Activation loop phosphorylaton of a non-RD receptor kinase initiates plant innate immune signaling

    Get PDF
    Receptor kinases (RKs) are fundamental for extracellular sensing and regulate development and stress responses across kingdoms. In plants, leucine-rich repeat receptor kinases (LRR-RKs) are primarily peptide receptors that regulate responses to myriad internal and external stimuli. Phosphorylation of LRR-RK cytoplasmic domains is among the earliest responses following ligand perception, and reciprocal transphosphorylation between a receptor and its coreceptor is thought to activate the receptor complex. Originally proposed based on characterization of the brassinosteroid receptor, the prevalence of complex activation via reciprocal transphosphorylation across the plant RK family has not been tested. Using the LRR-RK ELONGATION FACTOR TU RECEPTOR (EFR) as a model, we set out to understand the steps critical for activating RK complexes. While the EFR cytoplasmic domain is an active protein kinase in vitro and is phosphorylated in a ligand-dependent manner in vivo, catalytically deficient EFR variants are functional in antibacterial immunity. These results reveal a noncatalytic role for EFR in triggering immune signaling and indicate that reciprocal transphoshorylation is not a ubiquitous requirement for LRR-RK complex activation. Rather, our analysis of EFR along with a detailed survey of the literature suggests a distinction between LRR-RKs with RD- versus non-RD protein kinase domains. Based on newly identified phosphorylation sites that regulate the activation state of the EFR complex in vivo, we propose that LRR-RK complexes containing a non-RD protein kinase may be regulated by phosphorylation-dependent conformational changes of the ligand-binding receptor, which could initiate signaling either allosterically or through driving the dissociation of negative regulators of the complex
    corecore