50 research outputs found

    Bacterial Biofilm: Contribution to AMR and Approaches to Tackle

    Get PDF
    The brisk emergence of resistant microbes is occurring worldwide, endangering the efficacy of various antimicrobial agents. The overprescription of antimicrobial drugs results in the emergence of mutant strains of drug-resistant pathogens challenging the existing antimicrobial regime. Moreover, the outbreak of the pandemic has emphasized the necessity to consider the coinfections and antimicrobial resistance crisis as a vital motive of morbidity and mortality. Therefore, the prevention of such infections is much better than the eradication of the same. Thus, herein, we aim at providing a comprehensive list that can be used as an alternative class of antibacterial agents by exploiting the activity of various phytochemicals. The antibiofilm activity of various classes of phytochemicals would be projected for both the eradication and the prevention of biofilm formation in the presence of selected compounds. This chapter visualizes antimicrobial resistance as a matter of grave concern and one of the greatest threats to global health, food security, and development today

    Highly time-resolved chemical speciation and source apportionment of organic aerosol components in Delhi, India, using extractive electrospray ionization mass spectrometry

    Get PDF
    In recent years, the Indian capital city of Delhi has been impacted by very high levels of air pollution, especially during winter. Comprehensive knowledge of the composition and sources of the organic aerosol (OA), which constitutes a substantial fraction of total particulate mass (PM) in Delhi, is central to formulating effective public health policies. Previous source apportionment studies in Delhi identified key sources of primary OA (POA) and showed that secondary OA (SOA) played a major role but were unable to resolve specific SOA sources. We address the latter through the first field deployment of an extractive electrospray ionization time-of-flight mass spectrometer (EESI-TOF) in Delhi, together with a high-resolution aerosol mass spectrometer (AMS). Measurements were conducted during the winter of 2018/19, and positive matrix factorization (PMF) was used separately on AMS and EESI-TOF datasets to apportion the sources of OA. AMS PMF analysis yielded three primary and two secondary factors which were attributed to hydrocarbon-like OA (HOA), biomass burning OA (BBOA-1 and BBOA-2), more oxidized oxygenated OA (MO-OOA), and less oxidized oxygenated OA (LO-OOA). On average, 40 % of the total OA mass was apportioned to the secondary factors. The SOA contribution to total OA mass varied greatly between the daytime (76.8 %, 10:00–16:00 local time (LT)) and nighttime (31.0 %, 21:00–04:00 LT). The higher chemical resolution of EESI-TOF data allowed identification of individual SOA sources. The EESI-TOF PMF analysis in total yielded six factors, two of which were primary factors (primary biomass burning and cooking-related OA). The remaining four factors were predominantly of secondary origin: aromatic SOA, biogenic SOA, aged biomass burning SOA, and mixed urban SOA. Due to the uncertainties in the EESI-TOF ion sensitivities, mass concentrations of EESI-TOF SOA-dominated factors were related to the total AMS SOA (i.e. MO-OOA + LO-OOA) by multiple linear regression (MLR). Aromatic SOA was the major SOA component during the daytime, with a 55.2 % contribution to total SOA mass (42.4 % contribution to total OA). Its contribution to total SOA, however, decreased to 25.4 % (7.9 % of total OA) during the nighttime. This factor was attributed to the oxidation of light aromatic compounds emitted mostly from traffic. Biogenic SOA accounted for 18.4 % of total SOA mass (14.2 % of total OA) during the daytime and 36.1 % of total SOA mass (11.2 % of total OA) during the nighttime. Aged biomass burning and mixed urban SOA accounted for 15.2 % and 11.0 % of total SOA mass (11.7 % and 8.5 % of total OA mass), respectively, during the daytime and 15.4 % and 22.9 % of total SOA mass (4.8 % and 7.1 % of total OA mass), respectively, during the nighttime. A simple dilution–partitioning model was applied on all EESI-TOF factors to estimate the fraction of observed daytime concentrations resulting from local photochemical production (SOA) or emissions (POA). Aromatic SOA, aged biomass burning, and mixed urban SOA were all found to be dominated by local photochemical production, likely from the oxidation of locally emitted volatile organic compounds (VOCs). In contrast, biogenic SOA was related to the oxidation of diffuse regional emissions of isoprene and monoterpenes. The findings of this study show that in Delhi, the nighttime high concentrations are caused by POA emissions led by traffic and biomass burning and the daytime OA is dominated by SOA, with aromatic SOA accounting for the largest fraction. Because aromatic SOA is possibly more toxic than biogenic SOA and primary OA, its dominance during the daytime suggests an increased OA toxicity and health-related consequences for the general public.</p

    Stability of Lactobacillus rhamnosus GG incorporated in edible films: impact of anionic biopolymers and whey protein concentrate

    Get PDF
    The incorporation of probiotics and bioactive compounds, via plasticised thin-layered hydrocolloids, within food products has recently shown potential to functionalise and improve the health credentials of processed food. In this study, choice of polymer and the inclusion of whey protein isolate was evaluated for their ability to stabalise live probiotic organisms. Edible films based on low (LSA) and high (HSA) viscosity sodium alginate, low esterified amidated pectin (PEC), kappa-carrageenan/locust bean gum (κ-CAR/LBG) and gelatine (GEL) in the presence or absence of whey protein concentrate (WPC) were shown to be feasible carriers for the delivery of L. rhamnosus GG. Losses of L. rhamnosus GG throughout the drying process ranged from 0.87 to 3.06 log CFU/g for the systems without WPC, losses were significantly reduced to 0 to 1.17 log CFU/g in the presence of WPC. Storage stability (over 25d) of L. rhamnosus GG at both tested temperatures (4 and 25°C), in descending order, was κ-CAR/LBG>HSA>GEL>LSA=PEC. In addition, supplementation of film forming agents with WPC led to a 1.8- to 6.5-fold increase in shelf-life at 4°C (calculated on the WHO/FAO minimum requirements of 6 logCFU/g), and 1.6 to 4.3-fold increase at 25°C. Furthermore probiotic films based on HSA/WPC and κ-CAR/LBG/WPC blends had both acceptable mechanical and barrier properties

    Developing Standard Treatment Workflows—way to universal healthcare in India

    Get PDF
    Primary healthcare caters to nearly 70% of the population in India and provides treatment for approximately 80–90% of common conditions. To achieve universal health coverage (UHC), the Indian healthcare system is gearing up by initiating several schemes such as National Health Protection Scheme, Ayushman Bharat, Nutrition Supplementation Schemes, and Inderdhanush Schemes. The healthcare delivery system is facing challenges such as irrational use of medicines, over- and under-diagnosis, high out-of-pocket expenditure, lack of targeted attention to preventive and promotive health services, and poor referral mechanisms. Healthcare providers are unable to keep pace with the volume of growing new scientific evidence and rising healthcare costs as the literature is not published at the same pace. In addition, there is a lack of common standard treatment guidelines, workflows, and reference manuals from the Government of India. Indian Council of Medical Research in collaboration with the National Health Authority, Govt. of India, and the WHO India country office has developed Standard Treatment Workflows (STWs) with the objective to be utilized at various levels of healthcare starting from primary to tertiary level care. A systematic approach was adopted to formulate the STWs. An advisory committee was constituted for planning and oversight of the process. Specialty experts' group for each specialty comprised of clinicians working at government and private medical colleges and hospitals. The expert groups prioritized the topics through extensive literature searches and meeting with different stakeholders. Then, the contents of each STW were finalized in the form of single-pager infographics. These STWs were further reviewed by an editorial committee before publication. Presently, 125 STWs pertaining to 23 specialties have been developed. It needs to be ensured that STWs are implemented effectively at all levels and ensure quality healthcare at an affordable cost as part of UHC

    Therapeutic potential of polyphenols against aging- induced idiopathic pulmonary fibrosis (IPF) via Bioinformatics analysis

    No full text
    Background: Hyperactivation of Akt/mTORC1 is known to be the mechanistic driver for idiopathic pulmonary fibrosis (IPF) induction in elderly population. Stimulation of Aryl hydrocarbon receptor (AhR) under physiological stress is largely associated with Akt/mTORC1 inhibition upon aging. This in turn restores the normal autophagy and thereby curbs IPF induction in aged population. Method: To repurpose and validate polyphenol formulation against aging- driven lung fibrosis, molecular docking of the compounds selected from literature was performed. Findings from molecular docking were then being cross-confirmed by ADMET analysis unveiling the pharmacological aptness of docked molecules with the shortlisted receptors. Results: The present study aimed at investigating the possible dietary flavonoid therapy (Quercetin, baicalin, luteolin, curcumin, rutin, and epigallocatechin gallate (EGCG)) attenuating the activation of mTORC1 in the lung epithelia by molecular docking approaches to ascertain the binding affinities of phytoflavonoids towards AhR and FK506 binding protein (FKBP12) over the known IPF synthetic inhibitors - pirfenidone and nintedanib. Additionally, the toxicity profile of ligands was confirmed by ADMET. Baicalin and luteolin demonstrated the best free energy analysis over other phytochemicals and commercial IPF inhibitors (pirfenidone and nintedanib) used in the study. Additionally, the findings from docking study were further confirmed by ADMET analysis indicating the therapeutic potential of baicalin and luteolin in augmenting autophagic signaling and thus may confer significant resistance against lung scarring in aged population. Conclusion: Flavonoids formulations having mTORC1 suppression by AhR activation leading to autophagic induction can be considered as a therapeutic moiety for mitigating IPF during biological aging

    Fish and Shellfish Immunology

    No full text
    Not AvailableRohu (Labeo rohita), an Indian Major Carp (IMC) is an economically important aquaculture species in India. Inspite of the technological advances, infectious diseases caused by viruses, bacteria and parasites have been a major limiting factor in the development and profitability of fish farms. At present, information regarding the immune status of the Indian major carps is limited. This lack of knowledge is a major impediment for establishment of effective preventive measures against broad spectrum of infectious agents. The present study was undertaken to examine the modulation of few immune-regulatory genes: IgHC, NOD 1, TLR 22, iNOS and IL-1? during experimental infection of E. tarda in L. rohita to understand their role in pathogenesis. Rohu fingerlings were intra-peritoneally injected with Edwardsiella tarda (LD50 dose of 8.7 ? 104 CFU/fish) and sampled for three immunologically important organs (kidney, liver and spleen) at different time intervals (zero hour or pre-challenge and 6 h, 12 h, 24 h, 48 h and 96 h post challenge). For absolute quantification of genes by real time RT-PCR, all the genes transcript were amplified from Poly I:C induced rohu lymphocytes and cloned in pTZ57R/T plasmid. Standard curves for each gene was generated from serially diluted plasmid bearing respective genes. Evaluation of copy number of different genes present in the tissue showed that the expression of IgHC, iNOS and IL-1? was highest in kidney followed by spleen and least in liver. While for NOD 1 and TLR 22 gene, liver showed higher expression than kidney and spleen. Further, the expression of IgHC, INOS, TLR 22, NOD 1 and IL-1? genes significantly differed (P < 0.05) in the E. tarda challenged fish when compared with pre-challenged control fish. Among the five genes we studied, the basal expression of TLR 22 gene was highest. The result also depicts that iNOS and NOD 1 are immediate responsive genes as their expression reached maximum level at 6?24 h post infection (hpi) after which the expression declined. In contrast, TLR 22 and IgHC gene transcript showed enhanced expression during the late phase of with maximum expression observed after 48 hpi and 96 hpi respectively. IL-1?, being the exception, showed high expression both at 24 hpi and 96 hpi. From this study, we conclude that these five immune genes have a definite role to play in the defense mechanism of host (L. rohita) against E. tarda

    Aquaculture international

    No full text
    Not AvailableInterferon gamma (IFN-?) or type II interferon is a cytokine that is critical for innate and adaptive immunity against viral and some bacterial and protozoal infections. The importance of IFN-? in the immune system lies in its ability to inhibit viral replication directly and most importantly from its immunomodulatory effects. Previously, we successfully co-administered IFN-? along with GAPDH gene of Edwardsiella tarda as bicistronic DNA vaccine in Labeo rohita. In order to ascertain the individual role of IFN-?, the present study involves cloning and expression of 552-bp IFN-? open-reading frame (ORF) of L. rohita in striped snakehead (SSN-1) cell line using eukaryotic expression vector system (pQE-TriSystem) followed by transfection in peripheral blood lymphocytes (PBMCs) to evaluate its immunomodulatory ability in comparison to polyinosinic-polycytidylic acid (Poly I:C)-treated PBMCs. The 18.7-kDa protein, expressed in the pQE-IFN?-transfected SSN-1 cells, reacted with anti-His antibody in Western blot confirming it to be recombinant IFN-?, whereas the relative expression of IFN-?, iNOS, Mx, and IL-1? genes in PBMCs was quantified at 24 h and 48 h post treatment by qPCR. The comparative kinetics of all four genes showed significantly (p?<?0.05) high upregulation pattern in both pQE-IFN?-transfected cell group and Poly I:C-treated cell group demonstrating recombinant IFN-? as an equally efficient inducer like Poly I:C. Thus, our in vitro experiment results highlight the immunomodulatory potential of recombinant IFN-? as an analogue to synthetic Poly I:C which warranted future studies to further explore the potential of recombinant IFN-? as an effective vaccine adjuvant against different microbial invasion

    C:N:P proportions in nutrients, particulate organic matter and dissolved organic matter from surface to 2000 m water depth in the Bay of Bengal (Indian Ocean) during summer monsoon 2018

    No full text
    The dataset represents all data at each depth of sampling of elemental ratios and concentrations in dissolved inorganic matter, particulate organic matter and dissolved organic matter in three different layers during the summer monsoon (12 July−2 August 2018) in the Bay of Bengal (northeastern Indian Ocean)

    Vaccine

    No full text
    Not AvailableDNA-based immunization has proven to be an effective prophylactic measure to control aquatic animal diseases. In order to improve the efficiency of vaccine against fish pathogen, novel delivery mechanism needs to be adopted. In the present study we nanoconjugated the previously constructed DNA vaccine (pGPD + IFN) with chitosan nanoparticles (CNPs) by complex coacervation process. After construction of the vaccine, an in vivo vaccination trial was conducted in which 2 groups of rohu (L. rohita) fingerlings were vaccinated with CNPs-pGPD + IFN, one group by oral route (incorporated in feed for 14days) and the other by immersion route (primary and booster immunised), whereas, a third group was intramuscularly (I/M) injected (initial and booster immunised) with naked pGPD + IFN and subsequently challenged with E. tarda (8.7104CFU/fish) at 35-day post initial vaccination. The protective immune responses were determined in terms of relative percentage survival (RPS), specific antibody production, non-specific immune response, expression kinetics of immune-related genes and pathological manifestation. Evaluation of RPS analysis revealed that CNPs-pGPD + IFN groups recorded highest RPS (81.82% and 72.73% in oral and immersion vaccinated fish group respectively) while the naked pGPD + IFN injected group showed 63.62% RPS when compared with 55% cumulative mortality of control group. In addition, NBT, myeloperoxidase activity, serum lysozyme activity and specific antibody titre in case of CNPs-pGPD + IFN groups showed higher activities during all the time points. Furthermore, CNPs-pGPD + IFN groups showed significant (p<0.05) upregulation of different immune gene transcripts (IgHC, iNOS, TLR22, NOD1 and IL-1) in three immunologically important tissues post immunization (both primary and booster dose) as well as after challenge. Thus, from this study, we can conclude that oral or immersion vaccination with CNPs-pGPD + IFN can orchestrate an effective immunisation strategy in organizing a coordinative immune response against E. tarda in L. rohita exhibiting minimum stress to the host with maximum efficacy
    corecore