14 research outputs found

    Quantifying cross-border movements and migrations for guiding the strategic planning of malaria control and elimination

    Get PDF
    BACKGROUND: Identifying human and malaria parasite movements is important for control planning across all transmission intensities. Imported infections can reintroduce infections into areas previously free of infection, maintain ‘hotspots’ of transmission and import drug resistant strains, challenging national control programmes at a variety of temporal and spatial scales. Recent analyses based on mobile phone usage data have provided valuable insights into population and likely parasite movements within countries, but these data are restricted to sub-national analyses, leaving important cross-border movements neglected. METHODS: National census data were used to analyse and model cross-border migration and movement, using East Africa as an example. ‘Hotspots’ of origin-specific immigrants from neighbouring countries were identified for Kenya, Tanzania and Uganda. Populations of origin-specific migrants were compared to distance from origin country borders and population size at destination, and regression models were developed to quantify and compare differences in migration patterns. Migration data were then combined with existing spatially-referenced malaria data to compare the relative propensity for cross-border malaria movement in the region. RESULTS: The spatial patterns and processes for immigration were different between each origin and destination country pair. Hotspots of immigration, for example, were concentrated close to origin country borders for most immigrants to Tanzania, but for Kenya, a similar pattern was only seen for Tanzanian and Ugandan immigrants. Regression model fits also differed between specific migrant groups, with some migration patterns more dependent on population size at destination and distance travelled than others. With these differences between immigration patterns and processes, and heterogeneous transmission risk in East Africa and the surrounding region, propensities to import malaria infections also likely show substantial variations. CONCLUSION: This was a first attempt to quantify and model cross-border movements relevant to malaria transmission and control. With national census available worldwide, this approach can be translated to construct a cross-border human and malaria movement evidence base for other malaria endemic countries. The outcomes of this study will feed into wider efforts to quantify and model human and malaria movements in endemic regions to facilitate improved intervention planning, resource allocation and collaborative policy decisions

    The demographics of human and malaria movement and migration patterns in East Africa

    Get PDF
    Introduction: the quantification of parasite movements can provide valuable information for control strategy planning across all transmission intensities. Mobile parasite carrying individuals can instigate transmission in receptive areas, spread drug resistant strains and reduce the effectiveness of control strategies. The identification of mobile demographic groups, their routes of travel and how these movements connect differing transmission zones, potentially enables limited resources for interventions to be efficiently targeted over space, time and populations.Methods: national population censuses and household surveys provide individual-level migration, travel, and other data relevant for understanding malaria movement patterns. Together with existing spatially referenced malaria data and mathematical models, network analysis techniques were used to quantify the demographics of human and malaria movement patterns in Kenya, Uganda and Tanzania. Movement networks were developed based on connectivity and magnitudes of flow within each country and compared to assess relative differences between regions and demographic groups. Additional malaria-relevant characteristics, such as short-term travel and bed net use, were also examined.Results: patterns of human and malaria movements varied between demographic groups, within country regions and between countries. Migration rates were highest in 20--30 year olds in all three countries, but when accounting for malaria prevalence, movements in the 10--20 year age group became more important. Different age and sex groups also exhibited substantial variations in terms of the most likely sources, sinks and routes of migration and malaria movement, as well as risk factors for infection, such as short-term travel and bed net use.Conclusion: census and survey data, together with spatially referenced malaria data, GIS and network analysis tools, can be valuable for identifying, mapping and quantifying regional connectivities and the mobility of different demographic groups. Demographically-stratified HPM and malaria movement estimates can provide quantitative evidence to inform the design of more efficient intervention and surveillance strategies that are targeted to specific regions and population group

    Integrating rapid risk mapping and mobile phone call record data for strategic malaria elimination planning

    Get PDF
    As successful malaria control programmes re-orientate towards elimination, the identification of transmission foci, targeting of attack measures to high-risk areas and management of importation risk become high priorities. When resources are limited and transmission is varying seasonally, approaches that can rapidly prioritize areas for surveillance and control can be valuable, and the most appropriate attack measure for a particular location is likely to differ depending on whether it exports or imports malaria infections. Methods/Results: Here, using the example of Namibia, a method for targeting of interventions using surveillance data, satellite imagery, and mobile phone call records to support elimination planning is described. One year of aggregated movement patterns for over a million people across Namibia are analyzed, and linked with case-based risk maps built on satellite imagery. By combining case-data and movement, the way human population movements connect transmission risk areas is demonstrated. Communities that were strongly connected by relatively higher levels of movement were then identified, and net export and import of travellers and infection risks by region were quantified. These maps can aid the design of targeted interventions to maximally reduce the number of cases exported to other regions while employing appropriate interventions to manage risk in places that import them. <br/

    The distribution of trip durations between counties from mobile phone derived movements and census derived migrations.

    No full text
    <p>The probability of a trip of various distances for both the census-derived migration data and mobile phone usage data (number trips lasting between 2 and 3 months) was calculated.</p

    Gravity-type spatial interaction model fits for the mobile phone usage data.

    No full text
    <p>Gravity models were calibrated for each movement variable. A) The parameter values for are shown from the fit for various trip durations. Each parameter value from the census data is shown in the corresponding color as a dotted line. A gravity model was calibrated to fit the number of trips between counties lasting between 2 and 3 months. B) The actual data versus the gravity model fit is shown in the figure (Data/Fit). The ratio of true data to the results of the fitted model are shown broken down by C) population at the origin county, D) population at the destination and E) the distance (in kilometers) between the origin and destination. The model underestimates movements from low population counties (both as an origin and destination) and shorter trips.</p

    A comparison of the ranked estimates of movement.

    No full text
    <p>Counties in Kenya are colored according to the total outgoing rank from A) mobile phone derived movement data (the number of trips between 2 and 3 months, for example movements relevant for studying infectious diseases where transmission varies seasonally, such as influenza) and B) census derived migration data. The actual values are shown in C) with the one-to-one x-y line shown in red. D) The percentage of the population moving between all pairs of counties. For each movement variable, absolute outgoing movements were weighted by the percentage of the population moving to each destination. For both census migration data and mobile phone movement data (the number of trips between 2–3 months), a ranked value was calculated (adjusted R-squared = 0.5421, p<0.001).</p

    The use of census migration data to approximate human movement patterns across temporal scales

    Get PDF
    Human movement plays a key role in economies and development, the delivery of services, and the spread of infectious diseases. However, it remains poorly quantified partly because reliable data are often lacking, particularly for low-income countries. The most widely available are migration data from human population censuses, which provide valuable information on relatively long timescale relocations across countries, but do not capture the shorter-scale patterns, trips less than a year, that make up the bulk of human movement. Census-derived migration data may provide valuable proxies for shorter-term movements however, as substantial migration between regions can be indicative of well connected places exhibiting high levels of movement at finer time scales, but this has never been examined in detail. Here, an extensive mobile phone usage data set for Kenya was processed to extract movements between counties in 2009 on weekly, monthly, and annual time scales and compared to data on change in residence from the national census conducted during the same time period. We find that the relative ordering across Kenyan counties for incoming, outgoing and between-county movements shows strong correlations. Moreover, the distributions of trip durations from both sources of data are similar, and a spatial interaction model fit to the data reveals the relationships of different parameters over a range of movement time scales. Significant relationships between census migration data and fine temporal scale movement patterns exist, and results suggest that census data can be used to approximate certain features of movement patterns across multiple temporal scales, extending the utility of census-derived migration data
    corecore