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Abstract

Background: As successful malaria control programmes re-orientate towards elimination, the identification of
transmission foci, targeting of attack measures to high-risk areas and management of importation risk become
high priorities. When resources are limited and transmission is varying seasonally, approaches that can rapidly
prioritize areas for surveillance and control can be valuable, and the most appropriate attack measure for a
particular location is likely to differ depending on whether it exports or imports malaria infections.

Methods/Results: Here, using the example of Namibia, a method for targeting of interventions using surveillance data,
satellite imagery, and mobile phone call records to support elimination planning is described. One year of aggregated
movement patterns for over a million people across Namibia are analyzed, and linked with case-based risk maps built on
satellite imagery. By combining case-data and movement, the way human population movements connect transmission
risk areas is demonstrated. Communities that were strongly connected by relatively higher levels of movement were
then identified, and net export and import of travellers and infection risks by region were quantified. These maps
can aid the design of targeted interventions to maximally reduce the number of cases exported to other regions
while employing appropriate interventions to manage risk in places that import them.

Conclusions: The approaches presented can be rapidly updated and used to identify where active surveillance for both
local and imported cases should be increased, which regions would benefit from coordinating efforts, and how spatially
progressive elimination plans can be designed. With improvements in surveillance systems linked to improved diagnosis
of malaria, detailed satellite imagery being readily available and mobile phone usage data continually being collected by
network providers, the potential exists to make operational use of such valuable, complimentary and contemporary
datasets on an ongoing basis in infectious disease control and elimination.

Keywords: Human mobility, Plasmodium falciparum malaria, Malaria elimination, Migration, Disease mapping, Spatial
analysis, Satellite imagery, Mobile phones

Background 36 of the 107 malaria-endemic countries have declared

Significant progress is being made in reducing the mor-
bidity and mortality attributed to malaria globally [1-10],
and the Global Malaria Action Plan (GMAP) [11] articu-
lates a long-term vision for malaria eradication through
shorter-term local efforts to eliminate malaria. A total of
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they have a national policy for malaria elimination or
are pursuing spatially progressive elimination within their
borders [11-14].

Achieving elimination requires a re-orientation away
from the sorts of universal prevention and treatment
measures that define a control programme towards
targeted operations, such as identifying residual transmis-
sion foci, focusing vector control or parasite-based attack
measures to high-risk areas, identifying and curing both
asymptomatic and symptomatic infections, and managing
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importation risk [15]. Many of these operational require-
ments can be facilitated by accurate and timely creation of
risk maps. Such maps can help elimination programmes
understand the epidemiology of a disappearing disease,
and may allow proactive deployment of vector control
measures to high risk areas to prevent local transmission
and onward spread to other receptive areas, or suggest
areas where active case detection may be used to identify
and treat remaining parasite reservoirs [16]. Parasite rate-
based maps for malaria have now been constructed
[17,18], but infection prevalence is a poor metric for meas-
uring malaria at very low levels of endemicity (below 5%
parasite prevalence) due to the large sample size surveys
required for precise measurement in such contexts [19]. In
very low transmission environments, diagnostically con-
firmed malaria incidence provides a more useful measure
than prevalence, and elimination-focused programmes are
building capacity to rapidly provide such information,
including the place of residence of cases [20]. Such a sur-
veillance system is a crucial component of an elimination
strategy, but achieving and maintaining elimination will
require finding and curing infections that may be asymp-
tomatic or may never come into contact with reporting
health facilities [15]. Such infections can be identified
through intensive proactive surveillance, but the generation
of case-based risk maps at high spatial resolution has the
potential to remotely identify regions in which transmis-
sion is likely to be occurring more quickly and at substan-
tially lower cost.

Risk maps are essential for knowing where to attack
malaria, but they are insufficient for a strategic elimin-
ation plan. Attacking strategically requires deploying the
right measures in the right places, and doing so in a way
that gains are not lost due to movement of people and
parasites. For example, an attempt to eliminate malaria
in Haiti in the 1960s through mass drug administration
combined with DDT-spraying failed because the highly
mobile population continually reintroduced parasites
into areas that had just been cleared [21]. Understanding
human movement, which can provide connections be-
tween disparate high-risk areas, is critical to designing
appropriate elimination strategies and avoiding resur-
gence in post-elimination settings [22,23]. However, data
on human movement patterns in malaria-endemic re-
gions have been difficult to obtain, and often restricted to
local travel history surveys or census-derived migration
data [22]. The rapid global proliferation of mobile phones
has presented unprecedented opportunities for measur-
ing and understanding human movement dynamics. The
retrospective analysis of billions of call detail records
(CDRs), whereby temporal sequences of phone tower lo-
cations through which user communications were routed
are converted into movement trajectories [24-27], pro-
viding information on human travel for sample sizes of
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millions and at scales of entire countries. Previous studies
have demonstrated the value of such data when com-
bined with parasite prevalence maps in providing quanti-
tative guidance to malaria programmes [25,28,29], and
mapping ‘source’ and ‘sink’ areas of net infection export
or import [30]. However, in elimination settings where
infection prevalence is an inappropriate measure and
where case-based malaria maps are of greater utility, such
approaches have yet to be applied.

Here, the potential of integrating mobile phone CDRs
with rapid case-based mapping in providing a dynamic
evidence base to support malaria elimination planning in
low transmission settings is demonstrated, using Namibia
as an example. Between 2004 and 2011, scale up of vector
control and case management interventions in Namibia
contributed to a remarkable decline in reported malaria
cases from 610,800 to 14,400 [31]. Namibia is rapidly scal-
ing up its malaria programme, with significant strengthen-
ing of its diagnosis and surveillance systems planned over
the next five years, focused on achieving elimination by
2020. While the country has a clear strategic plan and
recently drafted national elimination policy in place [32],
achieving its goals will require a clearly defined strategy
to deploy resources to optimal effect. The integration of
movement data with case-based risk maps for Namibia
provides a dynamic framework for understanding the
connectivity between existing and potential malaria risk
areas and defining ‘source’ and ‘sink’ regions, where rela-
tively larger numbers of parasites may be exported than
imported through travel, and vice-versa. Targeting ag-
gressive attack measures to source communities will
reduce malaria both at their locations and throughout
the wider region to which it exports parasites. At the
same time, sustainable measures to reduce receptivity in
sink regions will be important to limit onwards transmis-
sion from imported infections.

Methods

Ethical approval

This project was approved by Ethics and Research
Governance of the University of Southampton (submission
#7696).

Mapping malaria risk

De-identified data on cases of malaria confirmed using
rapid diagnostic tests (RDTs) reporting to health facilities
across the three highest transmission regions, Kavango,
Omusati and Caprivi (Figures 1, 2, 3 and 4) for the malaria
transmission season in January to May 2011 were collected
by the Namibia National Vector-borne Diseases Control
Programme (NVDCP) in the course of routine surveil-
lance. The community of residence of each patient, as
reported to nurses at health facilities at the time of treat-
ment, was geolocated. A total of 109 cases from 74 unique
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are mapped as crosses.
A\

Figure 1 Predicted probability of malaria cases in January-May 2011 for Omusati region. The residential location of RDT confirmed cases

locations in Kavango, 234 cases from 41 unique locations
in Omusati and 332 cases from 47 unique locations in
Caprivi were successfully geolocated. The average age of
cases across settlements and districts showed no systematic
differences or biases. This indicated that transmission was
likely not high enough in any location for significant im-
munity to develop and result in lower case loads due to im-
munity effects, rather than environmental drivers. The
procedure for producing high resolution risk maps from
the case location data followed closely that outlined in
Cohen et al. [16] and is described below. Further details
are provided in Additional file 1.

Spatial covariate datasets representing rainfall, tem-
perature, elevation, temperature suitability for Plasmo-
dium falciparum, topographic wetness, vegetation, land
cover, distance to water, infrastructure, and population
density at 250 m resolution were assembled. Full de-
scriptions and details of dataset sources are provided in

Additional file 1. As transmission in Namibia is strongly
seasonal, where covariate data were available by month,
data for the January-May period were used to match
peak transmission, following assessment of malaria sea-
sonality in Namibia from aggregated NVDCP surveil-
lance system data (Figures 5 and 6, Additional file 1).
Values for each of the covariates were extracted for the
point locations of communities with confirmed cases
and ‘background’ points, randomly selected from across
populated areas of the regions, identified using a popula-
tion density dataset [33], with points sampled only from
grid cells with population estimates of >0.1 persons.
Background points do not necessarily indicate the ab-
sence of transmission, but instead characterize the envir-
onment of the country [34] in the places where people
live. Travel history information from patients were not
available, therefore to attempt to control for the fact that
patients may have obtained infections away from their

are mapped as crosses.

Figure 2 Predicted probability of malaria cases in January-May 2011 for Kavango region. The residential location of RDT confirmed cases
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mapped as crosses.

Figure 3 Predicted probability of malaria cases in January-May 2011 for Caprivi region. The residential location of RDT confirmed cases are

place of residence, locations with (i) just one case, then
(if) with one or two cases, were dropped, based on the
assumption that multiple cases in a location are more
likely to be representative of local transmission, and the
output results compared to the mapping run using all
case data to examine how sensitive outputs were to the
exclusion of these isolated cases. Samples of 10,000
background points [34,35] were selected for each region.
Following Cohen et al. [16], the regression tree classi-
fication approach ‘Random Forest’ [36] was applied
using the R [37] package ModelMap to model the risk of
cases occurring in each 250x250 m grid cell, both separ-
ately within each of the three regions where the case
data originated, and combined to undertake mapping
across the whole of northern Namibia. Regression trees
create a series of rules to partition the data into a set of
groups that are as homogenous as possible with respect
to the outcome [38]. For example, one such rule might
differentiate the locations of case households from those
of control households based on elevation below a cer-
tain threshold, while another rule might further divide
the data based on levels of vegetation within specific

bounds. In the Random Forest approach, the data are
repeatedly split according to many different branching
‘trees’ of this type, and the final prediction is made by
averaging across all of the individual trees [36]. To assess
the accuracy of model predictions, 80% of the observed
cases were selected at random for training the algorithm,
with the other 20% used for testing, with this repeated 100
times. All of the predictor variables were included in the
fitting step to produce a model predicting the probability
of cases occurring at a particular location as a function of
the combined covariates. Model quality was assessed by
examining calibration plots [39], the area under the curve
(AUC) on receiver operating characteristic (ROC) graphs
and correlation statistics [40]. The fitted model was then
applied in conjunction with the 250 m spatial resolution
gridded datasets of the predictive variables to generate a
map of predicted high season case risk across northern
Namibia.

Mobile phone call data records
CDRs covering the 12-month period October 2010 to
September 2011 were provided by the leading mobile

Figure 4 Predicted probability of malaria cases in January-May 2011 for northern Namibia (with named regions marked).
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phone service provider in Namibia, Mobile Telecommu-
nications Limited (MTC), who reported 1.5 million sub-
scribers in 2011, and a 90% market share [41]. The data
were obtained through written agreements between the
network provider, the NVDCP, and the Clinton Health
Access Initiative (CHAI). Following previous studies
[24-27,30], anonymized records aggregated to the level
of cell towers were provided to ensure that it was impos-
sible to identify individuals.

For each CDR from a call or text message, the caller
and receiver (identified using an anonymous ID), the
receiving tower ID that the call was routed through, and
the date of the call were recorded. Across the 12-month
period, a total of 9 billion communications from 1.19
million unique SIM cards were identified in the dataset,
representing 85% of the estimated 1.4 million adult (aged
over 15 years old) population of Namibia [42]. Recent
data on the typical ages of mobile phone owners in
Namibia were obtained from the Universal Service Base-
line Study of the Communications Regulatory Authority
of Namibia [41] and showed that while the majority of
users were between 20 and 30 years old, there was a
broad spread across age groups (Additional file 2).
Moreover, recent analyses suggest that such biases may
have a limited effect on general estimates of human
mobility [43].

Movements within urban areas were not considered
here, given the principal focus of this study on examin-
ing regional movement patterns. Therefore, phone
towers and movements falling within the boundaries of
urban extents mapped using the Global Rural Urban
Mapping Project Urban Extent (GRUMP-UE) dataset
[44], were aggregated so that only movements between
different urban areas or between rural and urban areas
remained in the analysed dataset. This reduced the data-
set of locations, or phone catchment areas, from 626 to
402. While rates of cross-border movements could not
be ascertained from the data, due to the network pro-
viders only operating a national-level network, those
crossing over the border into Namibia from neighbouring
countries commonly switch to a local SIM-card (MTC,
pers comm). This meant that the movements of such
travellers and migrants were captured in the dataset,
although the anonymized nature of the CDRs meant that
they could not be identified, nor their movements ana-
lysed separately from Namibian residents. Daily locations
were calculated for the subscribers using the location of
calls and texts at one of the 402 phone catchment areas
across the country, following methods outlined in other
similar studies [24-27,30]. Subscribers were assigned a
catchment area as their ‘home’ residence by where
the majority of nights were spent throughout the full
12-month period. Movements between areas were calcu-
lated by examining the temporal sequences of calls or

Page 6 of 15

texts sent/received by subscribers and assigning a move-
ment to a new area and a time of this move when the
area through which their call/text was routed changed.
Further, a general measure of population mobility, the
‘radius of gyration’ [24] was calculated for comparison of
mobility differences between areas. The radius of gyration
measures the characteristic distance travelled by a user
over a certain time period (in this case, the 12-month
period), and has been widely used in other CDR-based
human mobility studies [24,26,45].

The mobile phone data processing outlined above en-
ables construction of a weighted network of movements
between each phone catchment area. The identification
of distinct communities within this weighted network was
undertaken using a modularity optimization algorithm
[46]. The approach finds high modularity partitions of
large networks and unfolds a complete hierarchical com-
munity structure for the network. In simpler terms, the
approach identifies groups of areas that are connected by
high levels of movement and combines them into a single
‘community’. Rates of movement within communities are
generally higher than between separate communities. Such
community detection approaches have been used in previ-
ous malaria studies to identify communities of regions that
are either strongly connected by human or parasite move-
ments, or are more isolated [47,48]. The community de-
tection algorithm was run here on the networks of human
and case risk scaled (see below) movements, and the dif-
ferences examined.

Population and malaria flows and connectivity
Movements of people and their infections were esti-
mated for two types of travellers, following previous
approaches [25,29,30]: (i) ‘Returning residents’: Residents
of a location who visited a risk area then returned to
their home location, potentially bringing an infection
with them, and (ii) ‘Visitors: Residents of a risk area
who visited a new location and potentially carried an
infection with them. Here, given the malaria case data
available, the relative strengths of connectivity between
locations in terms of the case-based malaria risks were
examined, rather than attempting to estimate absolute
numbers of infections moving.

For returning residents, it was assumed that the risk of
acquiring an infection at their place of visit is a function
of the level of risk at the visited location and the length
of stay [25,29]. Therefore, a simple metric of cumulative
risk was calculated by scaling the number of days spent
at the visited location during the malaria transmission
season months (January-May) by the modelled risk value
there for each returning resident trip. For visitors to new
locations during the transmission season, it was assumed
that the relative risk of each visitor carrying an infection
can be quantified by the estimated level of risk at their



Tatem et al. Malaria Journal 2014, 13:52
http://www.malariajournal.com/content/13/1/52

home locations. These simple metrics defined import-
ation risk flow networks for returning residents, visitors
and, by combining the two, overall risk flow, which
quantified the connectivity through human movement
scaled by predicted risk across northern Namibia.
Throughout the focus is on flows and connectivity between
locations for the January-May 2011 period.

Mapping ‘sources’ and ‘sinks’

Through repeated introduction of malaria, human move-
ment can make it appear that an area is sustaining
transmission. Targeting the relatively larger exporter
communities (‘sources’) of infections with aggressive at-
tack measures is likely to have an impact on the numbers
of infections both at that location and in surrounding
areas that are net importers of infections (‘sinks’). At the
same time, sink communities with substantial potential for
transmission represent places where receptivity-lowering
activities, such as vector control, may be important to
manage the risk of imported malaria on an ongoing basis.
This sort of strategic deployment of interventions is likely
to increase the effect of limited resources. The estimation
of relative malaria risk connectivity matrices described
above enabled identification of the net exporters (sources)
or importers (sinks) per location.

Results

Case-based malaria risk mapping

Univariate analyses demonstrated the utility of the ma-
jority of the spatial covariates in distinguishing case loca-
tions from ‘background’ conditions (Additional file 1).
The Random Forest model provided further indication
of this through strong model prediction performance
with AUC =0.96 and correlation = 0.82 (Additional file 1).
Model assessments testing data and stratified by dis-
trict confirmed the accuracy of the approach in its
ability to identify locations of cases that were not in-
cluded at the training stage (Additional file 1). Judging
by the relative influence on the model predictions,
outputs were most dependent upon the spatial covariates
that quantified vegetation amounts, population density,
precipitation, and presence of water. Least important var-
iables were those related to temperature, elevation and
remoteness. Results were similar when broken down by
district (Additional file 1), highlighting the consistencies
in likely environmental drivers of transmission across
northern Namibia. Moreover, results appeared insensi-
tive to dropping locations with only one or two cases
(Additional file 1). Figures 1, 2, 3 and 4 depict the
maps generated from the predictive model for the entire
northern Namibia region, while Additional file 1 provides
further descriptions and data from the modelling. Table 1
provides population weighted risk estimates per health
district.
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Human mobility

Analyses of radius of gyration (Additional file 2) show
that population movements in Namibia follow patterns
seen elsewhere [24,26,45] of shorter distance movements
being substantially more common than larger ones and
more isolated populations generally travelling further
than those in densely populated areas (Additional file 2).
Across the 12-month period examined, a broad trend of
increasing phone usage is evident (Figure 6), with some
seasonality in overall movement rates evident, including
increased activity in December, just before the main mal-
aria transmission season (Figure 6). Spatially, movements
follow the major transport routes, with the largest amounts
of movement seen within the relatively highly populated
north-central region (Figure 7). Table 1 presents summar-
ies of mobility statistics by health district, with health dis-
tricts mapped in Figure 5.

Sources, sinks and communities of human and malaria
infection movements

Spatial heterogeneities in both movement patterns and
predicted malaria risk translate clearly into variations in
relative rates of infection movements, with phone catch-
ment areas of strong net exportation (sources) located
adjacent to areas that are net sinks (Figure 8). While
there are differences between areas in terms of estimated
net parasite importation and exportation, it is also clear
that most of the northern region consists of areas that
are simultaneously both major sources and sinks of
parasites (Figure 9), as high movement rates drive
parasite flows across the region. Unsurprisingly, the
north-central border region, which has some of the
highest predicted risks and largest, most mobile popu-
lations, also represents the largest source area for the
country (Figure 9). However, with predicted malaria
risk consistent across this region, heterogenities in
movement patterns within it drive variation in risk con-
nectivity, meaning that there are many regions, includ-
ing most of the north, which are both net importers
and have a high probability of cases seen (Figure 9).
The substantial amounts of travel from Windhoek to
the malarious northern regions and back, and from vis-
itors to Windhoek from the north, make the capital the
largest sink area (Figure 9). Community detection applied
to the weighted networks of movements, and movements
weighted by risk, between the 402 phone catchment
areas resulted in differing sets of communities of strongly
connected areas being found (Additional file 2), with
spatial differences also apparent between returning resi-
dents and visitors (Additional file 2). Table 1 summarizes
community membership by health district, with those
districts within the same communities displaying stron-
ger levels of internal connectivity through movements
than between differing communities, providing guidance
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Health district  Pop % phone  Mean Mean Mean trip Mean no.  Move Risk Pop in risk >50% Mean effect
2011 users risk RoG length trips comm comm and top 50 source  index
Andara 31,469 25 0.07 93.83 0.86 7217 13 8 9779 0.00382
Aranos 27,669 29 0.00 10737 093 1357 5 8 0 0.00000
Eenhana 104313 32 0.15 60.40 0.66 26.03 3 1 0 0.00416
Engela 127931 38 034 4523 030 30.86 3 1 0 0.00641
Gobabis 95,225 31 0.00 78.36 1.11 3.56 16 5 0 0.00010
Grootfontein 32,296 58 0.02 79.35 143 12.80 14 6 0 0.00215
Karasburg 19,946 58 0.00 16364 255 263 5 8 0 0.00000
Katima Mulilo 80,460 48 0.16 78.50 0.71 7.08 4 8 4773 0.00407
Keetmanshoop 37,138 60 0.00 113.79 1.28 4.70 5 5 0 0.00000
Khorixas 17,839 59 0.00 84.48 235 439 14 4 0 0.00085
Luderitz 24,890 88 0.00 20286 1.97 4156 6 1 0 0.00000
Mariental 23,358 60 0.00 10440 095 6.08 7 4 0 0.00000
Nankudu 38,601 32 0.11 71.04 0.56 21.77 4 8 12505 0.00389
Nyangana 23,109 31 0.11 57.50 0.27 5091 13 8 8064 0.00515
Okahandja 70,058 36 0.00 67.63 049 4.86 7 5 0 0.00000
Okahao 35,674 41 0.03 48.86 033 73.64 14 4 21 0.00165
Okakarara 18,120 57 0.00 63.17 0.70 20.53 16 5 0 0.00045
Okongo 17,560 46 0.12 12816 046 63.76 2 1 2628 0.00355
Omaruru 32,738 27 0.00 70.62 0.81 10.16 15 4 0 0.00000
Onandjokwe 148412 36 0.04 52.33 043 1825 8 3 0 0.00192
Opuwo 29,300 40 0.00 67.26 341 4.98 12 4 0 0.00155
Oshakati 152355 76 0.07 51.55 040 17.86 9 5 0 0.00339
Oshikuku 120363 39 042 5140 0.28 28.99 10 7 26829 0.00840
Otjiwarongo 44,708 68 0.00 73.59 0.62 4.66 14 4 0 0.00012
Outapi 63,890 58 0.16 59.00 0.67 2821 1 7 49703 0.00559
Outjo 17,772 59 0.00 68.16 0.63 10.14 14 4 0 0.00091
Rehoboth 71,282 30 0.00 66.42 0.94 10.15 7 4 0 0.00000
Rundu 67,743 65 0.13 83.98 045 14.46 13 8 72777 0.01091
Swakopmund 57,071 86 0.00 10949 088 9.03 15 4 0 0.00000
Tsandi 33,510 20 0.24 4531 032 121.86 11 7 6127 0.00364
Tsumeb 20,535 100 0.02 65.76 0.94 573 14 6 0 0.00582
Usakos 12,174 83 0.00 77.60 0.65 1491 15 4 0 0.00000
Walvisbay 57,337 107 0.00 120.11 1.15 6.66 15 7 0 0.00000
Windhoek 357909 90 0.00 82.04 0.76 1.50 7 5 0 0.00000

Health districts are mapped in Figure 5. The shortened column titles refer to the following: Pop 2011 = number of people estimated to be residing in each
health district in 2011; % Phone users =% of Pop 2011 population that were estimated to be captured in the CDR dataset, based on numbers of unique
anonymous user IDs; Mean risk = mean population weighted predicted malaria case risk on a 0-1 scale; Mean RoG = mean radius of gyration [24] of
movements derived from the phone data (See Additional file 2 for more details); Mean trip length = mean length of trip taken in days away from home
phone catchment area (See Additional file 2 for more details); Mean no. trips = Mean number of trips taken per year away from home phone catchment
area (See Additional file 2 for more details); Move comm = movement community that the majority of the area of each health district belongs to (Additional
file 2); Risk comm = malaria risk community that the majority of the area of each health district belongs to (Additional file 2); Pop in risk >50% and top 50
source = Number of people residing in areas where risk values are >0.5, and that are in the top 50 ‘source’ regions (Figure 9); Mean effect index = mean
value of the effect index mapped in Figure 12.

on which districts should prioritize coordinating surveil-
lance and control efforts due to substantial population

and parasite exchange.

Spatial targeting
The quantification of source/sink regions shown in
Figure 3 enables theoretical scenarios on the impact
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(lowest) to red (highest).

Figure 7 Movement totals between health districts over Oct 2010-Sept 2011 period, with rates of movement coloured from yellow
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targeting of control on malaria risk connectivity to be
tested to guide attack strategies. Figures 10 and 11 demon-
strate how differences in movement patterns can make a
substantial difference in terms of regional impact on rela-
tive rates of case importation seen elsewhere through
intervening in different areas. In Figure 10, a scenario is
shown where the predicted malaria case risk at the phone
catchment area highlighted is reduced to zero. As this is
one of the largest source areas (Figure 9), the relative

impact of this intervention is substantial across a wide
region, with most impact within the malaria movement
community it belongs to (Additional file 2). In contrast,
the same intervention in a phone catchment area of simi-
lar population size and malaria risk, but lower mobility in
terms of numbers and range of trips made to other catch-
ment areas, shows a substantially smaller impact, both
in magnitude and geographic extent terms (Figure 11).
These intervention effects on relative impacts of

Y_V B “‘; /’

—_— Source

B sink

y |
PSS

Figure 8 Mapped ‘sources’ (net exporters) and ‘sinks’ (net importers) of malaria importation risk. Areas coloured red are estimated to be
net infection sources based on rates of movement and malaria risk, and those coloured blue are sinks, while those coloured yellow are neither
substantial net exporter nor importers of infections.
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sinks by phone catchment areas.
.

Figure 9 Mapped ‘sources’ (net exporters) and ‘sinks’ (net importers) of malaria importation risk. The locations of the top 50 sources and

I Top 50 source
I Top 50 sink
Top 50 source and sink

infection exportation can be summarized through a simple
‘target effectiveness’ metric that measures, for each area,
the relative levels of case importation elsewhere that would
be stopped if malaria risk was reduced to zero in the area.
This metric is mapped in Figure 12 and summarized by
health district in Table 1, and shows a heterogenous pat-
tern, indicating that the targeting of surveillance and
control in certain areas may have a much larger impact
on the surrounding region than in other neighbouring
areas.

Finally, Figure 13 demonstrates the utility of the
combined mapping and movement quantification ap-
proach outlined here, through highlighting how high risk
areas and populations could be prioritized for further

investigation, surveillance and control. Existing national
guidelines categorize the entire northern zone 1’ region as
the high-risk area where interventions should be focused.
Through the rapid risk mapping approach, areas and popu-
lations within it can be highlighted that appear to be in
particularly higher risk areas for cases. This refinement re-
duces the population to target from 1.29 million residing
in the zone 1 region, to 0.24 million in the predicted higher
risk zones. Within these zones, population movements
mean that some areas are likely to be larger exporters
(sources) of infections (Figures 8 and 9) than others, and
the targeting of these can have a bigger effect on sur-
rounding areas than the targeting of sinks (Figures 10,
11 and 12). Targeting only those populations residing

source regions in Figures 8 and 9.
.

Figure 10 The influence of connectivity through human mobility on the spatial impact of interventions. The percentage reduction in
importation risk through reducing parasite exportation numbers to zero in the phone catchment area marked in blue, which is one of the major

- <1%
B 5%
5-10%
B 10-15%
B -15%
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Figure 11 The influence of connectivity through human mobility on the spatial impact of interventions. The percentage reduction in
importation risk through reducing parasite exportation numbers to zero in the phone catchment area marked in blue, which is of similar
population size and risk level to the focus phone catchment area of Figure 10, but has lower movement rates.

in the major ‘source’ areas of the high risk zones, mea-
sured in this case by those phone catchment areas that
are the top 50 largest sources (Figure 9), further re-
duces the focus population to 0.19 million.

Discussion

As many countries reap the success of recent invest-
ments in malaria control with reported cases declining
significantly, and re-orientate strategies towards elimin-
ation, parasite carriage by human travellers is rising up
national and global agendas [14,22,48,49]. In elimination
settings, the importation of malaria from outside a coun-
try becomes the focus of a malaria control programme,

but intranational human population and malaria parasite
movement is an important part of achieving elimination.
Understanding this movement should be a critical com-
ponent of the design of an elimination strategy, since it
enables programmes to target resources in the most effi-
cient way, plan attack strategies and ensure that context-
adapted intervention strategies are employed across all
high-risk areas. Past difficulties in quantifying and gain-
ing a better understanding of human movement patterns
are being overcome through new technologies [24,50]
and here the potential of one of these, mobile phones, is
outlined in providing valuable information that can be
integrated with rapid case-based malaria risk mapping

seen. Health district names are shown in Figure 5.

Figure 12 The influence of connectivity through human mobility on the spatial impact of interventions. Map of a ‘target effectiveness’
metric, which measures the relative reduction in importation risk elsewhere through controlling at each specific location, with red locations
representing the areas where reducing parasite exportation to zero has the largest effects elsewhere, through to green, where minimal effects are
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Figure 13 Malaria risk zone maps and the size of populations to target according to the different categorizations. The refinement of the
mapped areas shows how the method can be used to target high-risk areas and populations, providing a method for prioritizing the delivery of
limited resources.

[16] to guide the design of disease control and elimin-
ation strategies.

The analyses presented here illustrate heterogeneities
that exist in terms of both malaria risk and mobility
across Namibia. The case-based risk mapping results
(Figures 1, 2, 3 and 4) reveal the consistency in driving
factors of the probability of cases at the spatial scales ex-
amined here between the three regions for which data
were available (Additional file 1), as well as the accuracy
with which risk factors and areas can be distinguished
from the lower risk ‘background’ conditions (Additional
file 1). Through integrating such high resolution risk
mapping with CDRs, the targeting of elimination activ-
ities through identifying aspects of risk analogous to
both the ‘hotspots’ and ‘hotpops’ concepts [49] could be
undertaken if system flexibility and costs of undertaking
this allow, enabling the focused deployment of limited
resources in an attempt to focus surveillance activities
and maximize impact (Figure 13). In planning an attack
strategy, thinking spatially and accounting for mobility
could be critical — with a mass drug administration
(MDA) or mass screen and treat (MSAT) approach, re-
ducing receptivity in high transmission risk sinks could
be a focus through encouraging bed net use, while high
transmission sources are attacked (Figures 1, 2, 3, 4, 8, 9,
10, 11 and 12). Such an approach will likely be much
less costly and operationally difficult than trying to
achieve blanket high coverage of MDA/MSAT in all

high-risk areas (Figure 13). In post-elimination settings,
the framework presented here provides guidance for tar-
geting surveillance by highlighting how areas that are
climatically, ecologically and demographically receptive
to transmission are connected by human movement
(Figures 8 and 9, Additional file 2) and through examin-
ing likely sources and onward movements from local
outbreaks. It is clear that the exportation of parasites to
other locations is not always problematic if the destin-
ation is not receptive, and the approaches presented here
enable the separation of these ‘dead-end’ movements
from possible problematic movements to receptive areas.
The design of strategic plans for controlling, eliminating
and preventing malaria re-establishment should, there-
fore, ideally account for human and, in turn, likely para-
site movement patterns, and the analyses presented here
show that tools built on the integration of datasets that
are readily collected and stored by control programmes,
satellite operators and mobile phone network providers
can provide this valuable information for prioritizing
efforts.

Whilst the analyses presented of the connectivity
between risk areas in a malaria elimination setting go
beyond previous work, it is clear that a range of uncer-
tainties remain. Many of those crossing the border into
Namibia will be captured by phone data due to SIM
card switching, but clearly one of the biggest draw-
backs of such data for mobility analyses is the lack of
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cross-border movement rate quantification. Infection im-
portations from Angola and other neighbouring coun-
tries likely play a role in the epidemiology of malaria in
Namibia [48], and if the community detection analyses
could include cross-border movements they would likely
highlight the north-central regions as being in the same
community as south-central Angola and Caprivi joined
with its surrounding countries, with many economic and
family ties across the border prompting significant move-
ments [51] and collaboration in control being vital if
elimination is to be achieved [14,48]. While phone own-
ership and usage is high in Namibia, only a certain per-
centage of the population is being represented by the
CDRs used here, and these are partially biased towards
specific age groups and the richer and more mobile seg-
ments of the country [30,41] (Additional file 2). More-
over, the demographics and daily activities of network
subscribers remain relatively unknown (Additional file 2),
with different groups and activities likely presenting sig-
nificantly greater risks of infection acquisition than
others [22,47,52]. However, recent analyses on similar data
in Kenya suggest that this is not likely to present a substan-
tial bias in mobility estimates [43].

In terms of the risk mapping undertaken, it remains
clear that the approach identifies broad areas of suit-
ability for finding cases based on ecological, climatic,
physical and demographic indicators, which provides no
guarantee of finding ongoing transmission. However, the
cross-validation undertaken suggests good performance
in terms of identifying areas where cases have occurred
(Additional file 1), providing a valuable tool for pri-
oritizing areas for surveillance and further investigation.
Ideally, alternative metrics of transmission, such as sero-
logical markers [53] should also be incorporated as more
stable measures of transmission and to identify asymp-
tomatic infections, thus, better quantifying true hotspots
of transmission, but such measures are not yet routinely
collected. The utilization of training data from just three
districts here, where also spatial differences in treatment
seeking rates remain unknown, results in uncertainties in
risk predictions elsewhere, though the accuracies in pre-
dictions and consistency in variables selected as top pre-
dictors across the three districts suggests that the drivers
of transmission remain relatively consistent countrywide
(Additional file 1). Moreover, broad similarities of the out-
puts to the most recent surveillance data [31] also suggests
accurate mapping prospectively. Assessment of the sensi-
tivity of outputs presented here to variability in quality of
surveillance system data should represent an area of future
work, however. Ideally, information on the receptivity
(the propensity to result in onward transmission following
an imported case) of each area should form a valuable add-
itional metric to improve assessments of local transmission
risks from case introductions. Pre-control era prevalence
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data have been used to define this for the 1969-92 period
for Namibia [54,55], but significant development, popula-
tion growth and urbanization over recent years [42,56]
have likely changed receptivity substantially. Finally, the
lack of travel histories in the case data used raises the pos-
sibility that some infections were acquired away from their
location of residence, though the strong clustering of cases
is indicative of local transmission and removal of isolated
cases left outputs unchanged (Additional file 1).

The continued upgrade of the Namibia surveillance
system, as well as those in other elimination countries,
will begin to provide more in-depth information on cases,
enabling the separation of likely local versus imported
cases, as well as the travel histories of imported cases [57].
These improvements in type, quality and quantity of
surveillance data will in turn present opportunities for
the application of improved space-time statistical map-
ping approaches and mathematical transmission models
to quantify and account for uncertainties, as well as the
estimation of post-elimination risks of resurgence [23].
As data become more regularly reported, a central re-
pository in the form of an online mapping tool is likely to
be an important asset for elimination programs [58,59].
Integrating into such a tool rapid case-based risk mapping
that can be dynamically updated as new data are reported,
to account for seasonal and interannual variations [16],
would provide useful prioritization for further investiga-
tions and surveillance activities. The linkage to phone data
would then provide valuable information on mobility and
connectivity. Further, combining the CDRs with other
forms of movement data, such as census, survey and satel-
lite [22,50,60], could inform on the demographics, drivers
and seasonality of movements, as well as cross-border
data, all of which are lacking in phone data. Finally, many
of the methods outlined here are not restricted to malaria
elimination scenarios, with issues such as artemisinin
resistance spread [61,62], vaccine-preventable childhood
illnesses [63], and the elimination of other diseases [64]
also reliant on an understanding of movement dynamics.

Additional files

Additional file 1: Case-based malaria risk mapping - additional
details. Additional information on the datasets, methods and results for
the case-based risk mapping.

Additional file 2: Mobile phone call detail records - additional
details. Further information on phone ownership, mobile phone network
geography and mobility patterns in Namibia.
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