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Abstract

Human movement plays a key role in economies and development, the delivery of services, and the spread of infectious
diseases. However, it remains poorly quantified partly because reliable data are often lacking, particularly for low-income
countries. The most widely available are migration data from human population censuses, which provide valuable
information on relatively long timescale relocations across countries, but do not capture the shorter-scale patterns, trips less
than a year, that make up the bulk of human movement. Census-derived migration data may provide valuable proxies for
shorter-term movements however, as substantial migration between regions can be indicative of well connected places
exhibiting high levels of movement at finer time scales, but this has never been examined in detail. Here, an extensive
mobile phone usage data set for Kenya was processed to extract movements between counties in 2009 on weekly, monthly,
and annual time scales and compared to data on change in residence from the national census conducted during the same
time period. We find that the relative ordering across Kenyan counties for incoming, outgoing and between-county
movements shows strong correlations. Moreover, the distributions of trip durations from both sources of data are similar,
and a spatial interaction model fit to the data reveals the relationships of different parameters over a range of movement
time scales. Significant relationships between census migration data and fine temporal scale movement patterns exist, and
results suggest that census data can be used to approximate certain features of movement patterns across multiple
temporal scales, extending the utility of census-derived migration data.
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Introduction

Human movement affects important processes in the fields of

public health, economics, and ecology. For example, the pro-

gression of epidemics and maintenance of endemic diseases are

strongly linked to human movement patterns [1–7]. Economic

development can be driven by access to markets and efficient

transportation to increase workforce mobility and the flow of

goods [8–9]. Moreover, increasing human mobility has lead to the

dispersal of exotic species around the world, causing significant

economic damage in the case of pest species [10–11]. Planning,

mitigation, and development policies can be better informed

through the incorporation of data on human movement.

The measurement of human movement patterns is notoriously

difficult, however, and reliable datasets are few and far between,

especially in low-income regions of the world. Data on movement

are often collected for specific purposes that restrict generalizabil-

ity. For instance, traffic data are often collected for specific

development purposes such as the building of a new road [8],

while commuting to work surveys range in scope and sample size

[5–6,12–14], but are mostly limited to high-income countries and

those making specific workplace trips. Travel history questions

from household surveys provide highly detailed data about an

individual’s movement patterns, but rarely sample more than

a hundred individuals from a restricted group, and often suffer

from recall bias [15–17].
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The most widely used form of human movement data across

large areas is generated by national population and housing

censuses, available for almost all countries worldwide. A standard

census question asks respondents about their place of residence

one year previously. Responses to this question are often used to

derive estimates of rates of migration across or between countries

[18–20]. It remains unclear to what extent these migration data

represent and relate to the more frequent movements over shorter

time periods, for instance trips lasting a week or a few months, that

are of importance to factors such as disease spread and economic

development. The long term movements captured in census data

may well provide valuable proxies for shorter term movements,

however, and strong migration links between regions might be

indicative of well-connected locations that also exhibit high levels

of movement at shorter time scales because people from a given

population may be more likely to migrate to places that are well

visited by themselves and others from the same population.

Although this assumption is often held, it has never been validated.

Mobile phone usage data has recently been shown to be

a valuable source for information on short-term frequent move-

ments. The call data records (CDRs) provide the location of the

user at the time that they make a call or text, proving a high

temporal and spatial resolution picture of large samples of

individual movements over time periods of a year or more, and

have been shown to be valuable representations of human

movement patterns over temporal and spatial scales unachievable

with other types of data [7,21–27]. Such datasets are not widely

available, however, are difficult to obtain, and are highly sensitive,

making them difficult to share and analyze for most countries and

time periods. The data can be used to examine the relationships

between the short-term movements captured by the mobile

phones, and the longer term movements captured by the freely

and widely available census data, and potentially extend the utility

of census migration data, enabling the development of a better

understanding of multi-scale human movement patterns across

large areas.

Here we use a comprehensive mobile phone usage dataset for

Kenya describing the movement of almost 15 million users,

derived from their 12 billion communications over the course of

a year, to examine the extent to which census migration data from

a similar time period represents movements across a range of

temporal scales in absolute and relative terms. Moreover, we

explore the fit of gravity-type spatial interaction models to the

datasets to examine the potential of using such models for

quantifying movement patterns based on geographically refer-

enced demographic data.

Materials and Methods

Data
Mobile phone usage data. Anonymized mobile phone call

record data aggregated to routing tower level for Kenya were

provided by the incumbent mobile phone provider and included

the timings of calls and SMS communications from 14,816,512

subscribers from June 2008 - June 2009 (with February 2009

missing from the data set). In the interest of protecting privacy,

limited access to the anonymized data was made available to

a select set of researchers. Following the precedent of previous

similar studies [7,21–27], the data were provided in an

anonymized form, with subscribers represented as unique hashed

IDs, and were processed in a similar manner to those previous

studies. In total over twelve billion mobile phone communications

were recorded including the location of one of 11,920 routing

towers. The operator who provided the call data records had

approximately 92% market share at the time of data acquisition.

All subscriber data was aggregated to the county level scale to

further preserve anonymity.

Census data. In 2009, Kenya conducted a national popula-

tion and housing census. From the census results, data on the

number of residents who changed residence between all 48

counties during the previous year were obtained.

Quantifying movement. The mobile phone data is pre-

sented as call data records (CDRs). Each entry in a CDR contains

an anonymized caller ID, anonymized receiver ID, date, duration,

and tower routing number for both the caller and receiver. From

the CDRs the geographic location of the caller and receiver could

be approximated based on the unique longitude and latitude

coordinates for each mobile phone tower. Using the CDRs,

a location for each subscriber every time they either made/

received a call (or SMS) could be obtained. For each day in the

data set, subscribers were assigned a single tower location. If the

subscriber made at least one call on that day, then the location of

the majority routing tower was assigned. If the subscriber had not

made a call on that day, then the location of their most recent

routing tower was assigned. This provided a time series of tower

location for each subscriber on each day. As done in previous

studies, trips are calculated by observing when a subscriber’s tower

location has changed from the previous day [7]. However, to

compare the mobile phone data to the census data, we aggregated

towers to the county-level based on the tower’s location. Thus,

only trips between towers in different counties were considered.

For each trip measured, the duration of the trip was calculated by

counting successive days in the new location.

Analyses
Comparisons between mobile phone and census

data. The number of trips derived from the mobile phone data

that fell within various trip duration brackets (see legend for

Table 1) were calculated. For the various trip durations, the

absolute number of trips between all pairs of counties from the

mobile phone data were calculated and compared to the census

data using linear regression and Pearson’s correlation coefficient.

The percentage of county m’s population who has traveled to

county n was calculated. From these values, we ranked each flower

based on this relative movement measure for both the mobile

phone and census data. The relative values from both source and

destination flows between all pairs of counties were compared to

construct a relative ranking. Aside from comparing and quanti-

fying amounts of movement, both absolute and relative, an

empirical density distribution was constructed based on the

physical distance between counties. Using the centroids of each

county, the Euclidean distance between all pairs of counties was

calculated and a probability distribution based on trip distance was

defined.

Gravity-type spatial interaction model. The gravity mod-

el is one of the most well studied spatial interaction models, where

the modeled number of trips between locations x and y, Nx,y is

described by

Nx,y~
populationax � populationby

dist(x,y)c
zk

where populationx, populationy are the populations of locations x and y

and dist(x,y) is a function of the distance between x and y. The

exponents, a,b,cand intercept k were obtained from fitting the

model to actual data using a generalized linear model with

a Poisson specification [28–29]. It assumes that the only factors to
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estimate movement are locations, measured by the physical

distance between locations, and importance, measured by the

population size at each location. The simplicity of this model

makes it a commonly used method to approximate movement

between locations using empirical data. The exponents for

separate gravity models describing each type of movement using

population estimates from the census and Euclidean distance

between the centroids of each county were estimated.

Results

Comparison of Inter-county Movements between Mobile
Phone and Census Data
Using mobile phone call data records (CDRs) from Kenya in

2008–2009, we quantified the average inter-county movement of

each individual over a variety of time scales, as well as the number

of trips lasting various durations of time (see Methods). We

compared these movements with the inter-county movements

measured by Kenyan census data. We first analyzed absolute levels

of movement between counties. For every time period, mobile

phone data greatly overestimated census movement on average

between one and four orders of magnitude (Figure S1A, Table S1).

Using linear regression, we found that the closest match to the

census data were trips lasting longer than three months, but less

than four months (adjusted R2= 0.404, p,0.0001) (Figure S1B).

Total movement better fit the census data with adjusted R2 values

ranging from 0.134 to 0.404, all with significant p-values. The

poor correlations between absolute numbers of movements

derived from census migration data and mobile phone usage data

are unsurprising given the different types of movements over

differing timescales that each is capturing.

However, the relative ordering of counties by movement from

the two datasets was strikingly similar. Counties were ranked based

on the sum of outgoing and incoming trips for both the mobile

phone and census data. The linear fits were strong and significant

(adjusted R2 values fell between 0.45–0.67 and 0.32–0.60, all with

significant p-values for total trips and average number respectively)

(see Table 1). Figure 1 shows county level maps colored by their

ranked outgoing sum number of trips from A) mobile phone usage

data and B) census migration data, displaying the clear correlation

between the two ranked values. Figure 1C shows the fit, also for

the sum of outgoing trips. Both mobile phone data and census data

rank counties were similarly based on total movement incoming/

outgoing from each county. Moreover, both the total incoming

and outgoing trips were correlated with the county population

(Pearson’s correlation coefficient for total incoming= 0.657, for

total outgoing = 0.664, p-value,0.001 for both cases). A flow rank

computed from mobile phone data compared to a census derived

flow ranking was also considered. The relative percentage of

county m’s population travel to county n was calculated. From

these values, we ranked each flow based on this relative movement

measure for both the mobile phone and census data. The flow

ranks were a much closer fit than the absolute movement values

(adjusted R2= 0.542, p,0.0001) (Figure 1D). The ranked values of

Table 1. The relationship between mobile phone derived movement variables and national census derived migration variables.

Movement Variable Adjusted R2 (outgoing, relative) Adjusted R2 (incoming, relative) Percentage of Total Movements

Len. Week 0.5634 0.4575 87%

Len. Bi-Week 0.5785 0.4558 6%

Len. Month 0.6063 0.4585 3.9%

Len. 2 Months 0.6413 0.485 2%

Len. 3 Months 0.6555 0.4834 0.5%

Len. 4 Months 0.6652 0.4477 0.2%

Avg. Daily 0.4461 0.3244

Avg. Weekly 0.5962 0.4601

Avg. Bi-Weekly 0.5964 0.453

Avg. Monthly 0.6036 0.4504

Yearly 0.4461 0.3234

Len. Bi-Week 0.5785 0.4558 6%

Len. Month 0.6063 0.4585 3.9%

Len. 2 Months 0.6413 0.485 2%

Len. 3 Months 0.6555 0.4834 0.5%

Len. 4 Months 0.6652 0.4477 0.2%

Avg. Daily 0.4461 0.3244

Avg. Weekly 0.5962 0.4601

Avg. Bi-Weekly 0.5964 0.453

Avg. Monthly 0.6036 0.4504

Yearly 0.4461 0.3234

The total outgoing and incoming flows from movement between counties were quantified. Movement variables were defined for both various trip durations and the
average number of trips over different time frames. All trip duration variables (Len. Week – Len. 4 months) measured the total number of trips that lasted up to the
variable name, i.e. Len. Week measures trips lasting up to one week. The average number of trip variables (Avg. Daily – Yearly) measures the trips for various time
frames, i.e. Avg. Daily measures the average number of trips each day. For each movement variable, these values were ranked and compared with the ranked values
from the total outgoing/incoming movement of individuals from the national census. The census measured responses to the question, ‘where did you live one year
ago?’. A linear regression was used to quantify the relationship with adjusted R-squared values presented. Note for all movement variables, p,0.0001.
doi:10.1371/journal.pone.0052971.t001
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movement involving rural counties were strongly correlated (urban

to rural: correlation coefficient = 0.578, p,0.0001, rural to rural:

correlation coefficient = 0.53, p,0.0001, rural to urban: correla-

tion coefficient = 0.365, p,0.0001). However, ranked movements

between urban counties were not significantly correlated (corre-

lation coefficient = 0.447, p= 0.109) (see Figure S2, Tables S2 and

S3).

Distance Comparison
From the mobile phone data, relatively small spatial scale

movements between mobile phone towers can be quantified. The

average journey distance on the mobile phone tower level was

15 km (with a median of 5 km) (Figure 2). When aggregating

mobile phone tower movements to the same spatial scale as the

national census, the average distance for census movement was

higher than the mobile phone data (census mean/median: 182/

127 km, mobile phone mean/median: 160/106 km), due to the

size and shape of counties and the use of centroids to represent

them (see Methods). However, both distributions for the frequency

of trips for various distances from both sources of data were similar

(Kolmogorov–Smirnov statistic: 0.1168, p,0.0001) [30]. Thus,

although census and mobile phone derived movement estimates

are not comparable at the absolute level, the likelihood of trips for

various distances are similar. In particular, the census data is able

to approximate well the likelihood of shorter distance trips than

the absolute number of trips quantified using the census data

would suggest. The utility of census-derived migration data can

therefore be extended to estimate reliably the probability of

residents making trips at a range of distances for frequencies

substantially shorter than the timescales of a year as used in many

census questionnaires.

Figure 1. A comparison of the ranked estimates of movement. Counties in Kenya are colored according to the total outgoing rank from A)
mobile phone derived movement data (the number of trips between 2 and 3 months, for example movements relevant for studying infectious
diseases where transmission varies seasonally, such as influenza) and B) census derived migration data. The actual values are shown in C) with the
one-to-one x-y line shown in red. D) The percentage of the population moving between all pairs of counties. For each movement variable, absolute
outgoing movements were weighted by the percentage of the population moving to each destination. For both census migration data and mobile
phone movement data (the number of trips between 2–3 months), a ranked value was calculated (adjusted R-squared= 0.5421, p,0.001).
doi:10.1371/journal.pone.0052971.g001
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Gravity Model Parameterization from Census Data
Finally, the potential for using census-derived migration data as

a basis for modeling population movements at differing temporal

scales using a gravity-type spatial interaction model was examined.

Table S4 presents the estimated exponents, along with the

corresponding reduction in deviance fit for each type of

movement, including those from the census data. The census

data derived migrations showed the smallest reduction in deviance

(55.12%), whereas average daily and yearly movement derived

from the phone usage data both reduced deviance by 80%.

Unsurprisingly, as the duration of journey increases (from one

week to 3–4 months), the exponent on the destination’s

population, b, increases, whereas the distance exponent, c,
decreases (see Figure 3A). This implies that as the duration of

a journey increases, the destination becomes more important in

determining the number of trips, while the distance to the

destination becomes less important. Figures 3 B–E and S3 A–D

show the fit of gravity models from the mobile phone data and

census data. In general, the resulting fit overestimates the actual

travel. For low population counties and trips over a shorter

distance, the gravity model underestimates this travel, however.

Discussion

Novel approaches to quantifying human movement patterns

across spatial and temporal scales continue to increase our

understanding of the magnitudes, directions, and drivers of travel.

Mobile phone usage data [7,21–27], GPS tracking [2,31], and

satellite imagery [32] are enabling advancements in our un-

derstanding of movement dynamics, especially in low-income

settings. Such data and analyses are limited to specific locations or

countries and timescales, however, and often involve confidential

data that cannot be widely shared. If movement patterns in low-

income settings are to be quantified and better understood across

large areas and a variety of timescales, there is a need to make

better use of existing widely and regularly collected data, such as

migration data from national censuses. However, the ability of

such data sets to generalize to other scales of movement across

temporal scales has not been previously analyzed. Here we have

shown that census migration data can be used as a surrogate for

features of short-temporal scale, more frequent movements.

In absolute terms, unsurprisingly, there are poor correlations

between census derived migration data and phone derived

movement data due to the differing aspects of movement

measured. Migration data obtained for national population and

housing censuses are focused on describing permanent changes in

residence, whereas phone usage data capture all types of

movements, from those permanent residential changes, to seasonal

movements, occasional long distance travel and regular routine

movements [2,33–34]. However, it is clear that in terms of the

relative strength of connections across all temporal scales of

movement, strong correlations exist. The reasons behind this are

likely many and varied, including social motivations, e.g. areas of

economic opportunities and family ties, or physical features, e.g.

transportation accessibility and hindrances by natural barriers

such as mountains or lakes [19,35]. The strong relative relation-

ship between the shorter temporal scale movement patterns and

the census-derived migrations remains across all temporal scales

investigated. This offers practitioners the possibility of extending

the utility of census data to obtain relative estimates of movement

on smaller time scales for multiple applications. These may include

the mapping of clusters of regions that are relatively strongly

connected by movements at relevant timescales for disease control

and elimination planning purposes [7,21,33], the identification of

relatively poorly connected/isolated regions [33], and economic

development planning for infrastructure improvement [36].

Moreover, the gravity models exponents (Table S4) and, in

particular, the relationship between the exponents from various

types of phone-derived movement and exponents from the census

migration data, can be used to approximate a variety of types of

movement when only a national census is provided (see Figure 3A).

Generally, the ratios between these temporally varying types of

movement and the census migration data may enable more

detailed movement estimates to be obtained after refitting a gravity

model to the location of interest.

It is clear that while the findings here illustrate the potential for

census migration data to be used to represent shorter time period

movements, there exist uncertainties and caveats that must be

acknowledged before this is undertaken. While the gravity-type

spatial interaction model fits result in a large deviance reduction,

there still exists much variation unaccounted for, some of which

can be explained through the addition of extra demographic,

socioeconomic and environmental variables [19]. The model

performs poorly for travel among less populated counties and for

trips over short distances. The exact nature of this variation

remains to be fully explained, however, and extrapolation to other

countries that have different drivers of movement will be

inherently uncertain. Both sources of data used in this study have

Figure 2. The distribution of trip durations between counties from mobile phone derived movements and census derived
migrations. The probability of a trip of various distances for both the census-derived migration data and mobile phone usage data (number trips
lasting between 2 and 3 months) was calculated.
doi:10.1371/journal.pone.0052971.g002
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inherent limitations, which are well documented elsewhere [37–

38]. Arguably, mobile phone data provides some of the most

detailed human movement data available on a national scale.

Nonetheless, such data have inherent biases and are not

necessarily representative of the population [37]. In addition,

census migration data has uncertainties that can arise from the

interpretation of migration questions by respondents, actual time

within the year of moving, and inability to fully capture mobile

communities of individuals such as migrant workers or nomadic

peoples. Finally, the analyses here were limited by the spatial scale

of the national census and, thus, do not leverage the refined

movement patterns available from the mobile phone data or

address any heterogeneity in movement patterns within a county.

Increasing interest in the spatial modeling of infectious diseases

[4–5,8,38], geographical drivers of economic development [36]

and access to basic services [9,39–41] are driving a rising demand

for empirical data and models of human movement patterns across

multiple spatial and temporal scales. This demand is in turn

accelerating the exploitation of traditional data sources, such as

census, commuting and household survey data, as well as the

development of novel approaches based on data sources not

previously available, including mobile phones and GPS tracking

devices [2]. Each of these data sources has inherent strengths and

weaknesses, ranging from variations in sample sizes, spatiotempo-

ral coverage and resolution, and ease of data collection and

availability. Great potential exists to combine these differing

datasets in a range of ways to build on the strengths of each and

produce a more complete understanding of human movement

patterns across spatial and temporal scales, as demonstrated in

these analyses. Such approaches represent the aims of a wider

initiative, The Human Mobility Mapping Project (www.thummp.

org), focused on improved quantification of human movement

patterns in low-income regions and the development of open

access models to describe them.

Figure 3. Gravity-type spatial interaction model fits for the mobile phone usage data. Gravity models were calibrated for each movement
variable. A) The parameter values for a,b,c are shown from the fit for various trip durations. Each parameter value from the census data is shown in
the corresponding color as a dotted line. A gravity model was calibrated to fit the number of trips between counties lasting between 2 and 3 months.
B) The actual data versus the gravity model fit is shown in the figure (Data/Fit). The ratio of true data to the results of the fitted model are shown
broken down by C) population at the origin county, D) population at the destination and E) the distance (in kilometers) between the origin and
destination. The model underestimates movements from low population counties (both as an origin and destination) and shorter trips.
doi:10.1371/journal.pone.0052971.g003
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Supporting Information

Figure S1 Comparisons between mobile phone data
derived movements and census migrations. A) For each

pair of counties, the average number of trips lasting between 2 and

3 months was calculated from the mobile phone data. This

number is compared with the amount of movement from the

national census data. The x–y line is shown in red, indicating the

overestimation by mobile phone data. B) The relationship between

each absolute values of movement from each movement variable

was compared to the census data. Adjusted R2 values were

produced using a linear regression.

(PDF)

Figure S2 The relationship between mobile phone
movement patterns and the census data for counties
partitioned by urban, rural movements. Counties were

classified as either urban or rural and all movement patterns are

segmented based on the origin and destination classification.

Mobile phone data (here, trips lasting between two and three

months) overestimated the census data with the dotted lines

showing the x–y line.

(PDF)

Figure S3 The resulting fit from the gravity model
describing the census data. A) The actual data versus the

gravity model fit. The ratio of true data to the results of the fitted

model are shown broken by A) population of the origin B)

population of the destination and C) the distance (in kilometers)

between the origin and destination.The gravity model under

estimates movements from low population counties (both as an

origin and destination) and shorter trips. In general, the model

overestimates the amount of travel.

(PDF)

Table S1 The ratio between mobile phone data and
census data for all movement variables. For all movement

variables quantified using the mobile phone data, we compared

the ratio of this data to the census data. Minimum and maximum

values form the 90% quantile interval. For all types of movement,

the mobile phone overestimates the census data.

(DOCX)

Table S2 The ratio of mobile phone movement values
and the census movement for trips divided by county
type.Movements are partitioned according to trips A) from urban

counties to rural counties B) between urban counties C) from rural

counties to urban counties and D) between rural counties.

Minimum and maximum values form the 90% quantile interval.

For all movement variables except some instances of trips lasting

between three and four months and the average number of daily

trips, mobile phone data overestimates the census data. For trips

between urban counties, the mobile phone data has the largest

overestimation of the census data.
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Table S3 The correlation between mobile phone move-
ment patterns and the census data for counties parti-
tioned by urban, rural movements. A Pearson’s correlation

coefficient was used to quantify the relationship between mobile

phone movements and the census data. Significant correlation

coefficients (p,0.05) are marked with an asterisk. Movements

were partitioned by the urban/rural category of the origin and

destination. In general, the relationship between both sources of

data is the strongest between urban to rural trips and rural to

urban trips. The relationship of movement between urban

counties is only significant for trips lasting between two and four

months.
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Table S4 Coefficients and fit for gravity models. For

each movement variable, a gravity model was fit using populations

for the origin and destination as well as the Euclidean distance

between the origin and destination.
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