1,285 research outputs found

    Retinal glycoprotein enrichment by concanavalin a enabled identification of novel membrane autoantigen synaptotagmin-1 in equine recurrent uveitis.

    Get PDF
    Complete knowledge of autoantigen spectra is crucial for understanding pathomechanisms of autoimmune diseases like equine recurrent uveitis (ERU), a spontaneous model for human autoimmune uveitis. While several ERU autoantigens were identified previously, no membrane protein was found so far. As there is a great overlap between glycoproteins and membrane proteins, the aim of this study was to test whether pre-enrichment of retinal glycoproteins by ConA affinity is an effective tool to detect autoantigen candidates among membrane proteins. In 1D Western blots, the glycoprotein preparation allowed detection of IgG reactions to low abundant proteins in sera of ERU patients. Synaptotagmin-1, a Ca2+-sensing protein in synaptic vesicles, was identified as autoantigen candidate from the pre-enriched glycoprotein fraction by mass spectrometry and was validated as a highly prevalent autoantigen by enzyme-linked immunosorbent assay. Analysis of Syt1 expression in retinas of ERU cases showed a downregulation in the majority of ERU affected retinas to 24%. Results pointed to a dysregulation of retinal neurotransmitter release in ERU. Identification of synaptotagmin-1, the first cell membrane associated autoantigen in this spontaneous autoimmune disease, demonstrated that examination of tissue fractions can lead to the discovery of previously undetected novel autoantigens. Further experiments will address its role in ERU pathology

    Neutral Hydrogen Mapping of Virgo Cluster Blue Compact Dwarf Galaxies

    Full text link
    A new installment of neutral hydrogen mappings of Blue Compact Dwarf galaxies, as defined by optical morphology, in and near the Virgo cluster is presented. The primary motivation was to search for outlying clouds of HI as potential interactive triggers of the enhanced star formation, and therefore the mapped galaxies were selected for large HI} mass, large optical diameter, and large velocity profile width. Approximately half the sample proved to have one or more small, low column density star-free companion clouds, either detached or appearing as an appendage in our maps, at resolution of order 4 kpc. Comparison is made to a sample of similarly mapped field BCD galaxies drawn from the literature; however, the Virgo cluster sample of mapped BCDs is still too small for conclusive comparisons to be made. We found, on the one hand, little or no evidence for ram pressure stripping nor, on the other, for extremely extended low column density HI envelopes. The HI rotation curves in most cases rise approximately linearly, and slowly, as far out as we can trace the gas.Comment: To appear in AJ, Dec. 200

    Confirmation of an exoplanet using the transit color signature: Kepler-418b, a blended giant planet in a multiplanet system

    Full text link
    We announce confirmation of Kepler-418b, one of two proposed planets in this system. This is the first confirmation of an exoplanet based primarily on the transit color signature technique. We used the Kepler public data archive combined with multicolor photometry from the Gran Telescopio de Canarias and radial velocity follow-up using FIES at the Nordic Optical Telescope for confirmation. We report a confident detection of a transit color signature that can only be explained by a compact occulting body, entirely ruling out a contaminating eclipsing binary, a hierarchical triple, or a grazing eclipsing binary. Those findings are corroborated by our radial velocity measurements, which put an upper limit of ~1 Mjup on the mass of Kepler-418b. We also report that the host star is significantly blended, confirming the ~10% light contamination suspected from the crowding metric in the Kepler light curve measured by the Kepler team. We report detection of an unresolved light source that contributes an additional ~40% to the target star, which would not have been detected without multicolor photometric analysis. The resulting planet-star radius ratio is 0.110 +/- 0.0025, more than 25% more than the 0.087 measured by Kepler, leading to a radius of 1.20 +/- 0.16 Rjup instead of the 0.94 Rjup measured by the Kepler team. This is the first confirmation of an exoplanet candidate based primarily on the transit color signature, demonstrating that this technique is viable from ground for giant planets. It is particularly useful for planets with long periods such as Kepler-418b, which tend to have long transit durations. Additionally, multicolor photometric analysis of transits can reveal unknown stellar neighbors and binary companions that do not affect the classification of the transiting object but can have a very significant effect on the perceived planetary radius.Comment: accepted by Astronomy & Astrophysic

    Detection of transit timing variations in excess of one hour in the Kepler multi-planet candidate system KOI 806 with the GTC

    Full text link
    We report the detection of transit timing variations (TTVs) well in excess of one hour in the Kepler multi-planet candidate system KOI 806. This system exhibits transits consistent with three separate planets -- a Super-Earth, a Jupiter, and a Saturn -- lying very nearly in a 1:2:5 resonance, respectively. We used the Kepler public data archive and observations with the Gran Telescopio de Canarias to compile the necessary photometry. For the largest candidate planet (KOI 806.02) in this system, we detected a large transit timing variation of -103.5±\pm6.9 minutes against previously published ephemeris. We did not obtain a strong detection of a transit color signature consistent with a planet-sized object; however, we did not detect a color difference in transit depth, either. The large TTV is consistent with theoretical predictions that exoplanets in resonance can produce large transit timing variations, particularly if the orbits are eccentric. The presence of large TTVs among the bodies in this systems indicates that KOI806 is very likely to be a planetary system. This is supported by the lack of a strong color dependence in the transit depth, which would suggest a blended eclipsing binary.Comment: 9 pages, 4 figures, accepted into A&A Letter

    LATE EFFECTS OF HEMATOPETIC STEM CELL TRANSPLANTATION Impact of chronic GVHD on late complications after hematopoietic cell transplantation

    Get PDF
    Current results with transplantation of marrow or blood derived hemopoietic stem cells (HCT) in patients with aplastic anemia and patients who do not develop chronic graft-versus-host disease (GVHD) show life expectancies similar to agematched controls. However, patients with advanced malignant diseases and patients who develop chronic GVHD after transplant are at risk of late disease recurrence and delayed, potentially fatal complications Infections Late infections due to bacterial, viral and fungal organisms occur most commonly in patients with chronic GVHD. Early post-transplant prophylaxis may result in an increased incidence of late infections (see e.g., acyclovir/ganciclovir and late CMV infections). It is standard practice to give prophylaxis for infections caused by Pneumocystis carinii, varicella zoster and encapsulated bacteria (and, more recently, fungal organisms) during the first year post-transplant, or longer, for patients with chronic GVHD. Airway and pulmonary disease The bronchial tree may be involved by GVHD The pathogenesis of air flow obstruction (AFO) after HCT is not fully understood Progressive bronchiolitis obliterans has been reported to occur in 10% of all patients with chronic GVHD [6] from 3 months to 2 years after HCT. Clinical and pathological findings are similar to those seen after lung or heart-lung transplants A recent analysis of results in 6523 patients transplanted at FHCRC revealed 51 cases of bronchiolitis obliterans organizing pneumonia (BOOP), all but two after allogeneic transplants. BOOP was diagnosed at 5 Á/2,819 (median 108) days after HCT. The disease was significantly associated with acute and chronic GVHD. The disease progressed in 22% of patients and resolved or was stable in the remaining patient

    High-resolution infrared spectroscopy as a tool to detect false positives of transit search programs

    Full text link
    Transit search programs such as CoRoT and Kepler now have the capability of detecting planets as small as the Earth. The detection of these planets however requires the removal of all false positives. Although many false positives can be identified by a detailed analysis of the LCs, the detections of others require additional observations. An important source of false positives are faint eclipsing binaries within the PSF of the target stars. We develop a new method that allows us to detect faint eclipsing binaries with a separation smaller than one arcsec from target stars. We thereby focus on binaries that mimic the transits of terrestrial planets. These binaries can be either at the same distance as the target star (triple stars), or at either larger, or smaller distances. A close inspection of the problem indicates that in all relevant cases the binaries are brighter in the infrared than in the optical regime. We show how high resolution IR spectroscopy can be used to remove these false positives. For the triple star case, we find that the brightness difference between a primary and an eclipsing secondary is about 9-10 mag in the visual but only about 4.5-5.9 magnitudes in the K-band. We demonstrate how the triple star hypothesis can be excluded by taking a high-resolution IR spectrum. Simulations of these systems show that the companions can be detected with a false-alarm probability of 2%, if the spectrum has a S/N-ratio > 100. We show that high-resolution IR spectra also allows to detect most of the false positives caused by foreground or background binaries. If high resolution IR spectroscopy is combined with photometric methods, virtually all false positives can be detected without RV measurements. It is thus possible to confirm transiting terrestrial planets with a modest investment of observing time.Comment: 6 pages, 7 figure

    Photometric Variability in the Ultracool Dwarf BRI 0021-0214: Possible Evidence for Dust Clouds

    Get PDF
    We report CCD photometric monitoring of the nonemission ultracool dwarf BRI 0021-0214 (M9.5) obtained during 10 nights in 1995 November and 4 nights in 1996 August, with CCD cameras at 1 m class telescopes on the observatories of the Canary Islands. We present differential photometry of BRI 0021-0214, and we report significant variability in the I-band light curve obtained in 1995. A periodogram analysis finds a strong peak at a period of 0.84 day. This modulation appears to be transient because it is present in the 1995 data but not in the 1996 data. We also find a possible period of 0.20 day, which appears to be present in both the 1995 and 1996 datasets. However, we do not find any periodicity close to the rotation period expected from the spectroscopic rotational broadening (< 0.14 day). BRI 0021-0214 is a very inactive object, with extremely low levels of Halpha and X-ray emission. Thus, it is unlikely that magnetically induced cool spots can account for the photometric variability. The photometric variability of BRI 0021-0214 could be explained by the presence of an active meteorology that leads to inhomogeneous clouds on the surface. The lack of photometric modulation at the expected rotational period suggests that the pattern of surface features may be more complicated than previously anticipated.Comment: Accepted for publication in ApJ. 26 pages, 13 figures include

    Exomoon simulations

    Full text link
    We introduce and describe our newly developed code that simulates light curves and radial velocity curves for arbitrary transiting exoplanets with a satellite. The most important feature of the program is the calculation of radial velocity curves and the Rossiter-McLaughlin effect in such systems. We discuss the possibilities for detecting the exomoons taking the abilities of Extremely Large Telescopes into account. We show that satellites may be detected also by their RM effect in the future, probably using less accurate measurements than promised by the current instrumental developments. Thus, RM effect will be an important observational tool in the exploration of exomoons.Comment: 5 pages, 2 figures with 9 figure panels, accepted by EM&
    corecore