1,215 research outputs found

    Catena: Collaboration, Cohesion and Continuity in Design Thinking and Making

    Get PDF
    In the interests of enhanced collaborative methods of design thinking, design communication, representation and rapid ideation, this article examines how a series of related activities and events, ‘catenated’ together, or forming a ‘catena’1 of design thinking, could create a clearer, more meaningful and more efficient portfolio of work for a beginning design studio. Drawing inspiration upon the operative verbs found in the work of sculptor Richard Serra,2 and using the artefacts from such activities to create generative design products and iterations across a semester schedule, this paper chronicles a series of active in-class collaborations over the course of a semester that allowed a cohort of students to connect a series of design projects together, rather than experience a series of unconnected learning objectives as was typical. References to learning theories including Jerome Bruner’s spiral curriculum and David Kolb’s theory of experiential learning3 informed the inquiry. Student feedback and reflection informed the areas of success and areas of improvement

    Immunological Insights in Equine Recurrent Uveitis

    Get PDF
    Horses worldwide suffer from equine recurrent uveitis (ERU), an organ-specific, immune-mediated disease with painful, remitting-relapsing inflammatory attacks alternating with periods of quiescence, which ultimately leads to blindness. In course of disease, both eyes can eventually be affected and since blind horses pose a threat to themselves and their surroundings, these animals have to be killed. Therefore, this disease is highly relevant for veterinary medicine. Additionally, ERU shows strong clinical and pathological resemblance to autoimmune uveitis in man. The exact cause for the onset of ERU is unclear to date. T cells are believed to be the main effector cells in this disease, as they overcome the blood retinal barrier to invade the eye, an organ physiologically devoid of peripheral immune cells. These cells cause severe intraocular inflammation, especially in their primary target, the retina. With every inflammatory episode, retinal degeneration increases until eyesight is completely lost. In ERU, T cells show an activated phenotype, with enhanced deformability and migration ability, which is reflected in the composition of their proteome and downstream interaction pathways even in quiescent stage of disease. Besides the dysregulation of adaptive immune cells, emerging evidence suggests that cells of the innate immune system may also directly contribute to ERU pathogenesis. As investigations in both the target organ and the periphery have rapidly evolved in recent years, giving new insights on pathogenesis-associated processes on cellular and molecular level, this review summarizes latest developments in ERU research

    A Prototype for the PASS Permanent All Sky Survey

    Full text link
    A prototype system for the Permanent All Sky Survey (PASS) project is presented. PASS is a continuous photometric survey of the entire celestial sphere with a high temporal resolution. Its major objectives are the detection of all giant-planet transits (with periods up to some weeks) across stars up to mag 10.5, and to deliver continuously photometry that is useful for the study of any variable stars. The prototype is based on CCD cameras with short focal length optics on a fixed mount. A small dome to house it at Teide Observatory, Tenerife, is currently being constructed. A placement at the antarctic Dome C is also being considered. The prototype will be used for a feasibility study of PASS, to define the best observing strategies, and to perform a detailed characterization of the capabilities and scope of the survey. Afterwards, a first partial sky surveying will be started with it. That first survey may be able to detect transiting planets during its first few hundred hours of operation. It will also deliver a data set around which software modules dealing with the various scientific objectives of PASS will be developed. The PASS project is still in its early phase and teams interested in specific scientific objectives, in providing technical expertise, or in participating with own observations are invited to collaborate.Comment: Accepted for Astronomische Nachrichten (special issue for 3rd Potsdam Thinkshop 'Robotic Astronomy' in July 2004). 4 pages, 4 fig

    A cool starspot or a second transiting planet in the TrES-1 system?

    Full text link
    We investigate the origin of a flux increase found during a transit of TrES-1, observed with the HST. This feature in the HST light curve cannot be attributed to noise and is supposedly a dark area on the stellar surface of the host star eclipsed by TrES-1 during its transit. We investigate the likeliness of two possible hypothesis for its origin: A starspot or a second transiting planet. We made use of several transit observations of TrES-1 from space with the HST and from ground with the IAC-80 telescope. On the basis of these observations we did a statistical study of flux variations in each of the observed events, to investigate if similar flux increases are present in other parts of the data set. The HST observation presents a single clear flux rise during a transit whereas the ground observations led to the detection of two such events but with low significance. In the case of having observed a starspot in the HST data, assuming a central impact between the spot and TrES-1, we would obtain a lower limit for the spot radius of 42000 km. For this radius the spot temperature would be 4690 K, 560 K lower then the stellar surface of 5250 K. For a putative second transiting planet we can set a lower limit for its radius at 0.37 RJ_J and for periods of less than 10.5 days, we can set an upper limit at 0.72 RJ_J. Assuming a conventional interpretation, then this HST observation constitutes the detection of a starspot. Alternatively, this flux rise might also be caused by an additional transiting planet. The true nature of the origin can be revealed if a wavelength dependency of the flux rise can be shown or discarded with a higher certainty. Additionally, the presence of a second planet can also be detected by radial velocity measurements.Comment: 8 pages, 6 figures, accepted for publication in A&

    Blue Dots Team Transits Working Group Review

    Full text link
    Transiting planet systems offer an unique opportunity to observationally constrain proposed models of the interiors (radius, composition) and atmospheres (chemistry, dynamics) of extrasolar planets. The spectacular successes of ground-based transit surveys (more than 60 transiting systems known to-date) and the host of multi-wavelength, spectro-photometric follow-up studies, carried out in particular by HST and Spitzer, have paved the way to the next generation of transit search projects, which are currently ongoing (CoRoT, Kepler), or planned. The possibility of detecting and characterizing transiting Earth-sized planets in the habitable zone of their parent stars appears tantalizingly close. In this contribution we briefly review the power of the transit technique for characterization of extrasolar planets, summarize the state of the art of both ground-based and space-borne transit search programs, and illustrate how the science of planetary transits fits within the Blue Dots perspective.Comment: 9 pages, 3 figures, to be published in the proceedings (ASP Conf. Ser.) of the "Pathways Towards Habitable Planets" conference, held in Barcelona (14-18 Sep 2009

    Aberrant Migratory Behavior of Immune Cells in Recurrent Autoimmune Uveitis in Horses

    Get PDF
    The participating signals and structures that enable primary immune cells migrating within dense tissues are not completely revealed until now. Especially in autoimmune diseases, mostly unknown mechanisms facilitate autoreactive immune cells to migrate to endogenous tissues, infiltrating and harming organ-specific structures. In order to gain deeper insights into the migratory behavior of primary autoreactive immune cells, we examined peripheral blood-derived lymphocytes (PBLs) of horses with equine recurrent uveitis (ERU), a spontaneous animal model for autoimmune uveitis in humans. In this study, we used a three-dimensional collagen I hydrogel matrix and monitored live-cell migration of primary lymphocytes as a reaction to different chemoattractants such as fetal calf serum (FCS), cytokines interleukin-4 (IL-4), and interferon-gamma (IFN-gamma), and a specific uveitis autoantigen, cellular retinaldehyde binding protein (CRALBP). Through these experiments, we uncovered distinct differences between PBLs from ERU cases and PBLs from healthy animals, with significantly higher cell motility, cell speed, and straightness during migration of PBLs from ERU horses. Furthermore, we emphasized the significance of expression levels and cellular localization of septin 7, a membrane-interacting protein with decreased abundance in PBLs of autoimmune cases. To underline the importance of septin 7 expression changes and the possible contribution to migratory behavior in autoreactive immune cells, we used forchlorfenuron (FCF) as a reversible inhibitor of septin structures. FCF-treated cells showed more directed migration through dense tissue and revealed aberrant septin 7 and F-actin structures along with different protein distribution and translocalization of the latter, uncovered by immunochemistry. Hence, we propose that septin 7 and interacting molecules play a pivotal role in the organization and regulation of cell shaping and migration. With our findings, we contribute to gaining deeper insights into the migratory behavior and septin 7-dependent cytoskeletal reorganization of immune cells in organ-specific autoimmune diseases

    Photometric Variability in the Ultracool Dwarf BRI 0021-0214: Possible Evidence for Dust Clouds

    Get PDF
    We report CCD photometric monitoring of the nonemission ultracool dwarf BRI 0021-0214 (M9.5) obtained during 10 nights in 1995 November and 4 nights in 1996 August, with CCD cameras at 1 m class telescopes on the observatories of the Canary Islands. We present differential photometry of BRI 0021-0214, and we report significant variability in the I-band light curve obtained in 1995. A periodogram analysis finds a strong peak at a period of 0.84 day. This modulation appears to be transient because it is present in the 1995 data but not in the 1996 data. We also find a possible period of 0.20 day, which appears to be present in both the 1995 and 1996 datasets. However, we do not find any periodicity close to the rotation period expected from the spectroscopic rotational broadening (< 0.14 day). BRI 0021-0214 is a very inactive object, with extremely low levels of Halpha and X-ray emission. Thus, it is unlikely that magnetically induced cool spots can account for the photometric variability. The photometric variability of BRI 0021-0214 could be explained by the presence of an active meteorology that leads to inhomogeneous clouds on the surface. The lack of photometric modulation at the expected rotational period suggests that the pattern of surface features may be more complicated than previously anticipated.Comment: Accepted for publication in ApJ. 26 pages, 13 figures include

    CoRoT 101186644: A transiting low-mass dense M-dwarf on an eccentric 20.7-day period orbit around a late F-star

    Get PDF
    We present the study of the CoRoT transiting planet candidate 101186644, also named LRc01_E1_4780. Analysis of the CoRoT lightcurve and the HARPS spectroscopic follow-up observations of this faint (m_V = 16) candidate revealed an eclipsing binary composed of a late F-type primary (T_eff = 6090 +/- 200 K) and a low-mass, dense late M-dwarf secondary on an eccentric (e = 0.4) orbit with a period of ~20.7 days. The M-dwarf has a mass of 0.096 +/- 0.011 M_Sun, and a radius of 0.104 +0.026/-0.006 R_Sun, which possibly makes it the smallest and densest late M-dwarf reported so far. Unlike the claim that theoretical models predict radii that are 5%-15% smaller than measured for low-mass stars, this one seems to have a radius that is consistent and might even be below the radius predicted by theoretical models.Comment: Accepted for publication in Astronomy & Astrophysics, 8 pages, 10 figure

    Altered Metabolic Phenotype of Immune Cells in a Spontaneous Autoimmune Uveitis Model

    Get PDF
    As one of the leading causes of blindness worldwide, uveitis is an important disease. The exact pathogenesis of autoimmune uveitis is not entirely elucidated to date. Equine recurrent uveitis (ERU) represents the only spontaneous animal model for autoimmune uveitis in humans. As the metabolism of immune cells is an emerging field in research and gains more and more significance to take part in the pathogenesis of various diseases, we conducted experiments to investigate the metabolism of immune cells of ERU cases and healthy controls. To our knowledge, the link between a deviant immunometabolism and the pathogenesis of autoimmune uveitis was not investigated so far. We showed that PBMC of ERU cases had a more active metabolic phenotype in basal state by upregulating both the oxidative phosphorylation and the glycolytic pathway. We further revealed an increased compensatory glycolytic rate of PBMC and CD4(+) T cells of ERU cases under mitochondrial stress conditions. These findings are in line with metabolic alterations of immune cells in other autoimmune diseases and basic research, where it was shown that activated immune cells have an increased need of energy and molecule demand for their effector function. We demonstrated a clear difference in the metabolic phenotypes of PBMC and, more specifically, CD4(+) T cells of ERU cases and controls. These findings are another important step in understanding the pathogenesis of ERU and figuratively, human autoimmune uveitis
    • …
    corecore