457 research outputs found

    Multiple Front Propagation Into Unstable States

    Full text link
    The dynamics of transient patterns formed by front propagation in extended nonequilibrium systems is considered. Under certain circumstances, the state left behind a front propagating into an unstable homogeneous state can be an unstable periodic pattern. It is found by a numerical solution of a model of the Fr\'eedericksz transition in nematic liquid crystals that the mechanism of decay of such periodic unstable states is the propagation of a second front which replaces the unstable pattern by a another unstable periodic state with larger wavelength. The speed of this second front and the periodicity of the new state are analytically calculated with a generalization of the marginal stability formalism suited to the study of front propagation into periodic unstable states. PACS: 47.20.Ky, 03.40.Kf, 47.54.+rComment: 12 page

    Structural Stability and Renormalization Group for Propagating Fronts

    Full text link
    A solution to a given equation is structurally stable if it suffers only an infinitesimal change when the equation (not the solution) is perturbed infinitesimally. We have found that structural stability can be used as a velocity selection principle for propagating fronts. We give examples, using numerical and renormalization group methods.Comment: 14 pages, uiucmac.tex, no figure

    Double-Cropped Field Pea Crop Rotation Study

    Get PDF
    Farmers are continually searching for a third crop to complement the corn-soybean rotation. Field peas can be substituted for most of the soybean meal in swine rations and is more economical than soybean meal,so there is a huge potential market for field peas in Iowa. Field peas are a short season crop which makes double cropping a potential possibility

    Emergence Characteristics of Several Annual Weeds

    Get PDF
    No other event in the life cycle of weeds affects scouting and management timing as greatly as weed emergence. The timing and intensity of weed emergence affect everything from the effectiveness of burndown herbicides and preplant tillage, to timing of postplant tillage and herbicide application, to competitiveness of weeds that escape control, to seed production by surviving plants, to eventually population shifts. Given the importance of weed emergence to all forms of weed management, it seems logical that we should give greater attention to understanding and predicting weed emergence as affected by environmental factors, weed species, and management practices

    New exact fronts for the nonlinear diffusion equation with quintic nonlinearities

    Full text link
    We consider travelling wave solutions of the reaction diffusion equation with quintic nonlinearities ut=uxx+μu(1u)(1+αu+βu2+γu3)u_t = u_{xx} + \mu u (1 -u ) ( 1 +\alpha u + \beta u^2 +\gamma u^3). If the parameters α,β\alpha , \beta and γ\gamma obey a special relation, then the criterion for the existence of a strong heteroclinic connection can be expressed in terms of two of these parameters. If an additional restriction is imposed, explicit front solutions can be obtained. The approach used can be extended to polynomials whose highest degree is odd.Comment: Revtex, 5 page

    On the validity of the linear speed selection mechanism for fronts of the nonlinear diffusion equation

    Full text link
    We consider the problem of the speed selection mechanism for the one dimensional nonlinear diffusion equation ut=uxx+f(u)u_t = u_{xx} + f(u). It has been rigorously shown by Aronson and Weinberger that for a wide class of functions ff, sufficiently localized initial conditions evolve in time into a monotonic front which propagates with speed cc^* such that 2f(0)c<2sup(f(u)/u)2 \sqrt{f'(0)} \leq c^* < 2 \sqrt{\sup(f(u)/u)}. The lower value cL=2f(0)c_L = 2 \sqrt{f'(0)} is that predicted by the linear marginal stability speed selection mechanism. We derive a new lower bound on the the speed of the selected front, this bound depends on ff and thus enables us to assess the extent to which the linear marginal selection mechanism is valid.Comment: 9 pages, REVTE

    The Weakly Pushed Nature of "Pulled" Fronts with a Cutoff

    Get PDF
    The concept of pulled fronts with a cutoff ϵ\epsilon has been introduced to model the effects of discrete nature of the constituent particles on the asymptotic front speed in models with continuum variables (Pulled fronts are the fronts which propagate into an unstable state, and have an asymptotic front speed equal to the linear spreading speed vv^* of small linear perturbations around the unstable state). In this paper, we demonstrate that the introduction of a cutoff actually makes such pulled fronts weakly pushed. For the nonlinear diffusion equation with a cutoff, we show that the longest relaxation times τm\tau_m that govern the convergence to the asymptotic front speed and profile, are given by τm1[(m+1)21]π2/ln2ϵ\tau_m^{-1} \simeq [(m+1)^2-1] \pi^2 / \ln^2 \epsilon, for m=1,2,...m=1,2,....Comment: 4 pages, 2 figures, submitted to Brief Reports, Phys. Rev.

    Universal Algebraic Relaxation of Velocity and Phase in Pulled Fronts generating Periodic or Chaotic States

    Get PDF
    We investigate the asymptotic relaxation of so-called pulled fronts propagating into an unstable state. The ``leading edge representation'' of the equation of motion reveals the universal nature of their propagation mechanism and allows us to generalize the universal algebraic velocity relaxation of uniformly translating fronts to fronts, that generate periodic or even chaotic states. Such fronts in addition exhibit a universal algebraic phase relaxation. We numerically verify our analytical predictions for the Swift-Hohenberg and the Complex Ginzburg Landau equation.Comment: 4 pages Revtex, 2 figures, submitted to Phys. Rev. Let

    Renormalization Group Theory And Variational Calculations For Propagating Fronts

    Full text link
    We study the propagation of uniformly translating fronts into a linearly unstable state, both analytically and numerically. We introduce a perturbative renormalization group (RG) approach to compute the change in the propagation speed when the fronts are perturbed by structural modification of their governing equations. This approach is successful when the fronts are structurally stable, and allows us to select uniquely the (numerical) experimentally observable propagation speed. For convenience and completeness, the structural stability argument is also briefly described. We point out that the solvability condition widely used in studying dynamics of nonequilibrium systems is equivalent to the assumption of physical renormalizability. We also implement a variational principle, due to Hadeler and Rothe, which provides a very good upper bound and, in some cases, even exact results on the propagation speeds, and which identifies the transition from ` linear'- to ` nonlinear-marginal-stability' as parameters in the governing equation are varied.Comment: 34 pages, plain tex with uiucmac.tex. Also available by anonymous ftp to gijoe.mrl.uiuc.edu (128.174.119.153), file /pub/front_RG.tex (or .ps.Z

    Front propagation into unstable and metastable states in Smectic C* liquid crystals: linear and nonlinear marginal stability analysis

    Get PDF
    We discuss the front propagation in ferroelectric chiral smectics (SmC*) subjected to electric and magnetic fields applied parallel to smectic layers. The reversal of the electric field induces the motion of domain walls or fronts that propagate into either an unstable or a metastable state. In both regimes, the front velocity is calculated exactly. Depending on the field, the speed of a front propagating into the unstable state is given either by the so-called linear marginal stability velocity or by the nonlinear marginal stability expression. The cross-over between these two regimes can be tuned by a magnetic field. The influence of initial conditions on the velocity selection problem can also be studied in such experiments. SmC^* therefore offers a unique opportunity to study different aspects of front propagation in an experimental system
    corecore