457 research outputs found
Multiple Front Propagation Into Unstable States
The dynamics of transient patterns formed by front propagation in extended
nonequilibrium systems is considered. Under certain circumstances, the state
left behind a front propagating into an unstable homogeneous state can be an
unstable periodic pattern. It is found by a numerical solution of a model of
the Fr\'eedericksz transition in nematic liquid crystals that the mechanism of
decay of such periodic unstable states is the propagation of a second front
which replaces the unstable pattern by a another unstable periodic state with
larger wavelength. The speed of this second front and the periodicity of the
new state are analytically calculated with a generalization of the marginal
stability formalism suited to the study of front propagation into periodic
unstable states. PACS: 47.20.Ky, 03.40.Kf, 47.54.+rComment: 12 page
Structural Stability and Renormalization Group for Propagating Fronts
A solution to a given equation is structurally stable if it suffers only an
infinitesimal change when the equation (not the solution) is perturbed
infinitesimally. We have found that structural stability can be used as a
velocity selection principle for propagating fronts. We give examples, using
numerical and renormalization group methods.Comment: 14 pages, uiucmac.tex, no figure
Double-Cropped Field Pea Crop Rotation Study
Farmers are continually searching for a third crop to complement the corn-soybean rotation. Field peas can be substituted for most of the soybean meal in swine rations and is more economical than soybean meal,so there is a huge potential market for field peas in Iowa. Field peas are a short season crop which makes double cropping a potential possibility
Emergence Characteristics of Several Annual Weeds
No other event in the life cycle of weeds affects scouting and management timing as greatly as weed emergence. The timing and intensity of weed emergence affect everything from the effectiveness of burndown herbicides and preplant tillage, to timing of postplant tillage and herbicide application, to competitiveness of weeds that escape control, to seed production by surviving plants, to eventually population shifts. Given the importance of weed emergence to all forms of weed management, it seems logical that we should give greater attention to understanding and predicting weed emergence as affected by environmental factors, weed species, and management practices
New exact fronts for the nonlinear diffusion equation with quintic nonlinearities
We consider travelling wave solutions of the reaction diffusion equation with
quintic nonlinearities . If the parameters
and obey a special relation, then the criterion for the existence of a
strong heteroclinic connection can be expressed in terms of two of these
parameters. If an additional restriction is imposed, explicit front solutions
can be obtained. The approach used can be extended to polynomials whose highest
degree is odd.Comment: Revtex, 5 page
On the validity of the linear speed selection mechanism for fronts of the nonlinear diffusion equation
We consider the problem of the speed selection mechanism for the one
dimensional nonlinear diffusion equation . It has been
rigorously shown by Aronson and Weinberger that for a wide class of functions
, sufficiently localized initial conditions evolve in time into a monotonic
front which propagates with speed such that . The lower value is that predicted
by the linear marginal stability speed selection mechanism. We derive a new
lower bound on the the speed of the selected front, this bound depends on
and thus enables us to assess the extent to which the linear marginal selection
mechanism is valid.Comment: 9 pages, REVTE
The Weakly Pushed Nature of "Pulled" Fronts with a Cutoff
The concept of pulled fronts with a cutoff has been introduced to
model the effects of discrete nature of the constituent particles on the
asymptotic front speed in models with continuum variables (Pulled fronts are
the fronts which propagate into an unstable state, and have an asymptotic front
speed equal to the linear spreading speed of small linear perturbations
around the unstable state). In this paper, we demonstrate that the introduction
of a cutoff actually makes such pulled fronts weakly pushed. For the nonlinear
diffusion equation with a cutoff, we show that the longest relaxation times
that govern the convergence to the asymptotic front speed and profile,
are given by , for
.Comment: 4 pages, 2 figures, submitted to Brief Reports, Phys. Rev.
Universal Algebraic Relaxation of Velocity and Phase in Pulled Fronts generating Periodic or Chaotic States
We investigate the asymptotic relaxation of so-called pulled fronts
propagating into an unstable state. The ``leading edge representation'' of the
equation of motion reveals the universal nature of their propagation mechanism
and allows us to generalize the universal algebraic velocity relaxation of
uniformly translating fronts to fronts, that generate periodic or even chaotic
states. Such fronts in addition exhibit a universal algebraic phase relaxation.
We numerically verify our analytical predictions for the Swift-Hohenberg and
the Complex Ginzburg Landau equation.Comment: 4 pages Revtex, 2 figures, submitted to Phys. Rev. Let
Renormalization Group Theory And Variational Calculations For Propagating Fronts
We study the propagation of uniformly translating fronts into a linearly
unstable state, both analytically and numerically. We introduce a perturbative
renormalization group (RG) approach to compute the change in the propagation
speed when the fronts are perturbed by structural modification of their
governing equations. This approach is successful when the fronts are
structurally stable, and allows us to select uniquely the (numerical)
experimentally observable propagation speed. For convenience and completeness,
the structural stability argument is also briefly described. We point out that
the solvability condition widely used in studying dynamics of nonequilibrium
systems is equivalent to the assumption of physical renormalizability. We also
implement a variational principle, due to Hadeler and Rothe, which provides a
very good upper bound and, in some cases, even exact results on the propagation
speeds, and which identifies the transition from ` linear'- to `
nonlinear-marginal-stability' as parameters in the governing equation are
varied.Comment: 34 pages, plain tex with uiucmac.tex. Also available by anonymous ftp
to gijoe.mrl.uiuc.edu (128.174.119.153), file /pub/front_RG.tex (or .ps.Z
Front propagation into unstable and metastable states in Smectic C* liquid crystals: linear and nonlinear marginal stability analysis
We discuss the front propagation in ferroelectric chiral smectics (SmC*)
subjected to electric and magnetic fields applied parallel to smectic layers.
The reversal of the electric field induces the motion of domain walls or fronts
that propagate into either an unstable or a metastable state. In both regimes,
the front velocity is calculated exactly. Depending on the field, the speed of
a front propagating into the unstable state is given either by the so-called
linear marginal stability velocity or by the nonlinear marginal stability
expression. The cross-over between these two regimes can be tuned by a magnetic
field. The influence of initial conditions on the velocity selection problem
can also be studied in such experiments. SmC therefore offers a unique
opportunity to study different aspects of front propagation in an experimental
system
- …