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ABSTRACT
We investigate the asymptotic relaxation of so-called pulled fronts propagating into an unstable
state. The \leading edge representation" of the equation of motion reveals the universal nature of
their propagation mechanism and allows us to generalize the universal algebraic velocity relaxation
of uniformly translating fronts to fronts, that generate periodic or even chaotic states. Such fronts
in addition exhibit a universal algebraic phase relaxation. We numerically verify our analytical
predictions for the Swift-Hohenberg and the Complex Ginzburg-Landau equation.
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Many systems, when driven su�ciently far from equi-
librium, spontaneously organize themselves in coherent
or incoherent patterns. The ubiquity of such structures in
almost all �elds of the natural sciences [1,2] has inspired
much of the recent scienti�c e�ort to uncover the var-
ious mechanisms underlying their behavior. Especially
in physics, the insight from the seventies that in crit-
ical phenomena universality classes are determined es-
sentially by the symmetry of the order parameter and
the dimensionality, initially raised some hopes that there
would be analogous broad universality classes in nonequi-
librium pattern formation. Over the last two decades, it
has become clear, however, that such far-reaching uni-
versality does not exist: While there are various general
dynamical and instability mechanisms, there is not al-
ways a sharp selection mechanism. Moreover, if there is
sharp selection, the particular mechanism may depend on
the speci�c boundary conditions, initial conditions, etc.
In the case of front propagation, there have, neverthe-

less, been several hints of a generic dynamical mecha-
nism [3,4]: There is a large class of fronts propagating
into an unstable state whose asymptotic velocity equals
v�, the asymptotic spreading velocity of linear pertur-
bations about the unstable state. Such fronts are called
pulled fronts, as they are \pulled along" by the leading
edge of the pro�le whose dynamics is governed by the
linearization about the unstable state [5{7]. It is the
purpose of this letter to show that within the subclass
of pulled front propagation, a remarkable degree of uni-
versality does hold: Irrespective of whether such fronts
are uniformly translating or generate periodic or chaotic
patterns, the velocity v(t) and phase �(t) of pulled fronts
which emerge from steep initial conditions (falling o�
faster than e��

�x for x!1), display a universal power
law relaxation with time t, expressed by

v(t) � v� + _X(t) (1)

_X(t) = � 3

2��t
+

3
p
�

2��2t3=2
Re

�
1p
D

�
+O

�
1

t2

�
; (2)

_�(t) = �q� _X(t)� 3
p
�

2��t3=2
Im

�
1p
D

�
+O

�
1

t2

�
: (3)

As explained below, the coe�cients v�; k� = q�+i��, and
D are all given explicitly in terms of the dispersion rela-
tion of the linearized equation. We shall focus on deter-
mining how these exact asymptotic relaxation formulas
emerge, and why they are independent of the nonlineari-
ties, the precise initial conditions, or on whether the front
dynamics is regular or chaotic. Before embarking on this,
however, it is important to explain what we mean by ve-
locity and phase for the various types of fronts.

Uniformly translating pulled fronts. The simplest types
of fronts are those for which the dynamical �eld �(x; t)
asymptotically approaches a uniformly translating pro-
�le � � �v�(�), �=x�v�t, as happens, e.g., in the cele-
brated nonlinear di�usion equation @t� = @2x�+���3 for

fronts propagating into the unstable � = 0 state. If we
de�ne level curves as the lines in an x; t diagram where
�(x; t) has a particular value, we can de�ne the velocity
v(t) as the slope of a level curve. For uniformly trans-
lating fronts, q� = 0= ImD; (2) then reduces to the ex-
pression derived for uniformly translating fronts in [7].
The remarkable point is that the expression for v(t) is
in this case completely independent of which level curve
one traces. Moreover, it was shown in [7] that the nonlin-
ear front region is slaved to the leading edge of the front
whose velocity relaxes according to (2). This results in

�(x; t) = �v(t)(�X ) +O(t�2) ; �X �
p
t ; (4)

�X = x� v�t�X(t) ; (5)

where �v(�), �=x�vt solves the o.d.e. for a front prop-
agating uniformly with velocity v. v(t) in (4) is the in-
stantaneous velocity of the front, and the frame �X is
shifted by the time dependent quantity X(t). Since the
collective coordinate X(t) diverges as ln t for large t ac-
cording to (2), the di�erence between �X and a uniformly
translating frame is crucial | only in the former can we
follow the relaxation. Uniformly translating fronts have
no phase, hence all terms in (3) vanish identically.

Coherent pattern generating fronts. As an example of
coherent pattern generating fronts, we consider the so-
called Swift-Hohenberg (SH) equation

@tu = "u� (1 + @2x)
2u� u3 ; " > 0 : (6)

The space-time plot of Fig. 1(a) illustrates how SH-
fronts with steep initial conditions (falling o� faster than
e��

�x as x!1 into the unstable state u=0) generate a
periodic pattern. It is known that they are pulled [4,8,9].
In this case, new level curves in an x; t plot are constantly
being generated. If we de�ne in this case the velocity as
the slope of the uppermost level curve, one gets an os-
cillatory function. Its average is v(t) given in (1), but
v(t) is di�cult to extract this way. Numerically, it is
better to determine the velocity from an empirical enve-
lope obtained by interpolating the positions of the max-
ima. Since these pattern forming front solutions for long
times have a temporal periodicity u(�; t) = u(�; t+ T ) in
the frame � = x � vt moving with the velocity v of the
front, the asymptotic pro�les can be written in the formP

n=1 e
�2�int=TUn

v (�) + c:c:. In terms of these complex
modes U , our result for the shape relaxation of the pulled
front pro�le becomes in analogy to (4)

u(x; t) '
X
n=1

e�ni

�t�ni�(t)Un

v(t)(�X ) + c:c:+ � � � (7)

with the frequency 
� given below [10]. Eq. (7) shows
that �(t) is the global phase of the relaxing pro�le, as the
functions Un

v only have a �X -dependence. The result of
our calculation of the long time relaxation of v(t) and
�(t) is given in (1) { (3). We stress that while for "! 0,
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an ansatz like (7) leads to an amplitude equation for the
n = �1 terms, our analysis applies for any " > 0.

Incoherent or chaotic fronts. The third class we con-
sider consists of fronts which leave behind chaotic states.
They occur in some regions of parameter space in the
cubic Complex Ginzburg-Landau equation [11] or in the
quintic extension (QCGL) [12] that we consider here,

@tA = "A+ (1 + iC1)@
2
xA+ (1 + iC3)jAj2A
� (1� iC5)jAj4A : (8)

Fig. 1(b) shows an example of a pulled front in this equa-
tion. Level curves in a space-time diagram can now also
both start and end. If we calculate the velocity from the
slope of the uppermost level line, then its average value is
again given by (2) [13], but the oscillations can be quite
large. However, our analysis con�rms what is already
visible in Fig. 1(b), namely that even a chaotic pulled
front becomes more coherent the further one looks into
the leading edge of the pro�le. Indeed we will see that in
the leading edge where jAj � 1 the pro�le is given by an
expression reminiscent of (7),

A(x; t) � e�i

�t�i�(t)eik

��X (�X ); 1� �X �
p
t: (9)

The uctuations about this expression become smaller
the larger �X .
In Figs. 1(c) and 2(c) we show as an example results

of our simulations of the SH equation (6) and the QCGL
(8). They fully con�rm our predictions (2) and (3) for the
asymptotic average velocity and phase relaxation. Note
that for the QCGL, the uctuations are indeed smaller
the more one probes the leading edge region.
We now summarize how these results arise.
Calculation of the asymptotic parameters. Although

this is well-known [14], we �rst briey summarize how
the linear spreading velocity v� and the associated pa-
rameters �� etc. arise, as the analysis also motivates the
subsequent steps. After linearization about the unsta-
ble state, the equations we consider can all be written
in the form @t� = L(@x; @2x; � � �)�. For a Fourier mode
e�i!t+ikx, this yields the dispersion relation !(k). The
linear spreading velocity v� of steep initial conditions is
then obtained by a saddle point analysis of the Green's
function G of these equations. In the asymptotic frame
� = x� v�t, G(�; t) becomes

G(�; t) =

Z
dk

2�
e�i
(k)t+ik� � eik

���i
�t e
� �2

4Dtp
4�Dt

(10)

for large times. Here 
(k) = !(k)� v�k, and
d
(k)

dk

����
k�
=0 ; Im
(k�)=0 ; D=

id2
(k)

2dk2

����
k�
: (11)

The �rst equation in (11) is the saddle point condition,
while the second one expresses the self-consistency con-
dition that there is no growth in the co-moving frame.

These equations straight forwardly determine v�; k� =
q� + i��; D and the real frequency 
� = 
(k�) [15].

Choosing the proper frame and transformation. Eq.
(10) not only con�rms that a localized initial condition
will grow out and spread asymptotically with the velocity
v� given by (11), but the Gaussian factor also determines
how the asymptotic velocity is approached in the fully lin-
ear case. Our aim now is to understand the convergence
of a pulled front due to the interplay of the linear spread-
ing and the nonlinearities. The Green's function expres-
sion (10) gives three important hints in this regard: First
of all, G(�; t) is asymptotically of the form eik

���i
�t

times a crossover function whose di�usive behavior is
betrayed by the Gaussian form in (10). Hence if we
write our dynamical �elds as A = eik

���i
�t (�; t) for the
QCGL (8) or u = eik

���i
�t (�; t)+c:c: for the real �eld u
in (6), we expect that the dynamical equation for  (�; t)
obeys a di�usion-type equation. Second, as we have
argued in [7], for the relaxation analysis one wants to
work in a frame where the crossover function  becomes
asymptotically time independent. This is obviously not
true in the � frame, due to the factor 1=

p
t in (10).

However, this term can be absorbed in the exponential
prefactor, by writing t��eik

���i
�t = eik
���i
�t�� ln t.

Hence, we introduce the logarithmically shifted frame
�X=��X(t) [7] as already used in (5). Third, we �nd a
new feature speci�c for pattern forming fronts: the com-
plex parameters, andD in particular, lead us to introduce
the global phase �(t). We expand _�(t) like _X(t) [7]

_X(t) =
c1
t
+
c3=2

t3=2
+ � � � ; _�(t) =

d1
t
+
d3=2

t3=2
+ � � � (12)

and analyze the long time dynamics by performing a
\leading edge transformation" to the �eld  ,

QCGL: A = eik
��X�i


�t�i�(t)  (�X ; t) ;

SH: u = eik
��X�i


�t�i�(t)  (�X ; t) + c:c: (13)

Steep initial conditions imply that  (�X ; t)!0 as �X!
1. The determination of the coe�cients in the expan-
sions (12) of _X and _� is the main goal of the subsequent
analysis, as this then directly yields Eqs. (2) and (3).

Understanding the intermediate asymptotics. Substi-
tuting the leading edge transformation (13) into the non-
linear dynamical equations, we get

@t = D@2�X +
X
n=3

Dn@
n
�X 

+ [ _X(t)(@�X + ik�) + i _�(t)] �N( ) ; (14)

with Dn = (�i=n!)dn
=(dik)njk� the generalization of
D in (11) (of course, for the QCGL, 
(k) is quadratic
in k, so Dn = 0). In this equation, N accounts for the
nonlinear terms; e.g., for the QCGL, we simply have
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N = e�2�
��X j j2 [1�iC3+(1�iC5)e

�2���X j j2] : (15)

The expression for the SH equation is similar.
The structure of Eq. (14) is that of a di�usion-type

equation with 1=t and higher order corrections from the
_X and _� terms, and with a nonlinearity N . The crucial
point to recognize now is that for fronts, N is nonzero
only in a region of �nite width: For �X!1, N decays
exponentially due to the explicit exponential factors in
(15). For �X!�1, N also decays exponentially, since u
and A remain �nite, so that  decays as e��

�j�X j accord-
ing to (13). Intuitively, therefore, we can think of (14) as
a di�usion equation in the presence of a sink N localized
at some �nite value of �X . The ensuing dynamics of  
to the right of the sink can be understood with the aid
of Figs. 2(a) and (b), which are obtained directly from
the time-dependent numerical simulations of the QCGL
(8). To extract the intermediate asymptotic behavior il-
lustrated by these plots, we integrate (14) once to get

@t

Z �X

�1

d�0X  = D@�X +
X
n=3

Dn

n� 1
@n�1�X

 + (16)

+i[k� _X(t) + _�(t)]

Z �X

�1

d�0X  + _X(t) �
Z �X

�1

d�0X N( )

Now, in the region labeled I in Fig. 2(b), we have for �xed
�X and t ! 1 that the terms proportional to _X and _�
can be neglected upon averaging over the fast uctua-
tions; the same holds for the term on the left. Since the
integral converges quickly to the right due to the expo-
nential factors in N , we then get immediately, irrespec-
tive of the presence of higher order spatial derivatives

lim
t!1

D
@ 

@�X
=

Z 1

�1

d�XN( ) � �D : (17)

Here, the overbar denotes a time average (necessary for
the case of a chaotic front). Thus, for large times in re-
gion I,  � ��X + � in dominant order. Moreover, from
the di�usive nature of the equation, our assertion that

the uctuations of  rapidly decrease to the right of the
region where N is nonzero comes out naturally. In other
words, provided that the time-averaged sink strength �
is nonzero, � 6= 0, one will �nd a buildup of a linear gra-
dient in j j in region I, independent of the precise form
of the nonlinearities or of whether or not the front dy-
namics is coherent. This behavior is clearly visible in
Fig. 2(b). We can understand the dynamics in regions
II and III along similar lines. In region III the dominant
terms in (14) are the one on the left and the �rst one on
the second line, and the cross-over region II which sep-
arates regions I and III moves to the right according to
the di�usive law �X � D

p
t.

Systematic expansion. These considerations are fully
corroborated by our extension of the analysis of [7]. An-
ticipating that  falls o� for �X � 1, we split o� a Gaus-
sian factor by writing  (�X ; t) = G(z; t) e�z in terms of
the similarity variable z = ��X

2=(4Dt), and expand

G(z; t) = t1=2g� 1

2

(z) + g0(z) + t�1=2g 1

2

(z) + � � � (18)

This, together with the expansion (12) for X(t) and
�(t), the left \boundary condition" that  (�X ; t!1) =
��X +� and the condition that the functions g(z) do not
diverge exponentially, then results in the expressions (2)
for _X(t) and (3) for _� [9]. For the QCGL, the analysis
immediately implies the result (9) for the front pro�le in
the leading edge. In addition for the SH equation, one
arrives at (7) for the shape relaxation in the front interior
along the lines of [7]: Starting from the o.d.e.'s for the
Un
v , one �nds upon transforming to the frame �X that to
O(t�2), the time dependence only enters parametrically
through v(t). This then yields (7).

In conclusion, we have shown that the long time relax-
ation of pulled fronts is remarkably universal: Indepen-
dent of whether fronts are uniformly translating, pattern
generating or chaotic, the velocity and phase relaxation is
governed by one simple formula, with universal dominant
and subdominant power law expressions.
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