172 research outputs found

    Impact of internal gravity waves on the rotation profile inside pre-main sequence low-mass stars

    Full text link
    We study the impact of internal gravity waves (IGW), meridional circulation, shear turbulence, and stellar contraction on the internal rotation profile and surface velocity evolution of solar metallicity low-mass pre-main sequence stars. We compute a grid of rotating stellar evolution models with masses between 0.6 and 2.0Msun taking these processes into account for the transport of angular momentum, as soon as the radiative core appears and assuming no more disk-locking from that moment on.IGW generation along the PMS is computed taking Reynolds-stress and buoyancy into account in the bulk of the stellar convective envelope and convective core (when present). Redistribution of angular momentum within the radiative layers accounts for damping of prograde and retrograde IGW by thermal diffusivity and viscosity in corotation resonance. Over the whole mass range considered, IGW are found to be efficiently generated by the convective envelope and to slow down the stellar core early on the PMS. In stars more massive than ~ 1.6Msun, IGW produced by the convective core also contribute to angular momentum redistribution close to the ZAMS. Overall, IGW are found to significantly change the internal rotation profile of PMS low-mass stars.Comment: Accepted for publication in A&A (15 pages

    Thermohaline instability and rotation-induced mixing. III - Grid of stellar models and asymptotic asteroseismic quantities from the pre-main sequence up to the AGB for low- and intermediate-mass stars at various metallicities

    Full text link
    The availability of asteroseismic constraints for a large sample of stars from the missions CoRoT and Kepler paves the way for various statistical studies of the seismic properties of stellar populations. In this paper, we evaluate the impact of rotation-induced mixing and thermohaline instability on the global asteroseismic parameters at different stages of the stellar evolution from the Zero Age Main Sequence to the Thermally Pulsating Asymptotic Giant Branch to distinguish stellar populations. We present a grid of stellar evolutionary models for four metallicities (Z = 0.0001, 0.002, 0.004, and 0.014) in the mass range between 0.85 to 6.0 Msun. The models are computed either with standard prescriptions or including both thermohaline convection and rotation-induced mixing. For the whole grid we provide the usual stellar parameters (luminosity, effective temperature, lifetimes, ...), together with the global seismic parameters, i.e. the large frequency separation and asymptotic relations, the frequency corresponding to the maximum oscillation power {\nu}_{max}, the maximal amplitude A_{max}, the asymptotic period spacing of g-modes, and different acoustic radii. We discuss the signature of rotation-induced mixing on the global asteroseismic quantities, that can be detected observationally. Thermohaline mixing whose effects can be identified by spectroscopic studies cannot be caracterized with the global seismic parameters studied here. But it is not excluded that individual mode frequencies or other well chosen asteroseismic quantities might help constraining this mixing.Comment: 15 pages, 11 figures, accepted for publication in A&

    The extended Main Sequence Turn Off cluster NGC1856: rotational evolution in a coeval stellar ensemble

    Full text link
    Multiple or extended turnoffs in young clusters in the Magellanic Clouds have recently received large attention. A number of studies have shown that they may be interpreted as the result of a significant age spread (several 10^8yr in clusters aged 1--2 Gyr), while others attribute them to a spread in stellar rotation. We focus on the cluster NGC 1856, showing a splitting in the upper part of the main sequence, well visible in the color m_{F336W}-m_{F555W}$, and a very wide turnoff region. Using population synthesis available from the Geneva stellar models, we show that the cluster data can be interpreted as superposition of two main populations having the same age (~350Myr), composed for 2/3 of very rapidly rotating stars, defining the upper turnoff region and the redder main sequence, and for 1/3 of slowly/non-rotating stars. Since rapid rotation is a common property of the B-A type stars, the main question raised by this model concerns the origin of the slowly/non-rotating component. Binary synchronization is a possible process behind the slowly/non-rotating population; in this case, many slowly/non-rotating stars should still be part of binary systems with orbital periods in the range from 4 to 500 days. Such periods imply that Roche lobe overflow occurs, during the evolution of the primary off the main sequence, so most primaries may not be able to ignite core helium burning, consistently why the lack of a red clump progeny of the slowly rotating population.Comment: 8 pages 4 figures, accepted for publication on Monthly Notices of the R.A.

    On the radial distribution of stars of different stellar generations in the globular cluster NGC 3201

    Full text link
    We study the radial distribution of stars of different stellar generations in the globular cluster NGC 3201. From recently published multicolour photometry, a radial dependence of the location of stars on the giant branch was found. We coupled the photometric information to our sample of 100 red giants with Na, O abundances and known classification as first or second-generation stars. We find that giants stars of the second generation in NGC 3201 show a tendency to be more centrally concentrated than stars of the first generation, supporting less robust results from our spectroscopic analysis.Comment: Accepted for publication on Astronomy and Astrophysic

    Magnetic field structure in single late-type giants: Beta Ceti in 2010 - 2012

    Full text link
    The data were obtained using two spectropolarimeters - Narval at the Bernard Lyot Telescope, Pic du Midi, France, and ESPaDOnS at CFHT, Hawaii. Thirty-eight circularly-polarized spectra have been collected in the period June 2010 - January 2012. The Least Square Deconvolution method was applied for extracting high signal-to-noise ratio line profiles, from which we measure the surface-averaged longitudinal magnetic field Bl. Chromospheric activity indicators CaII K, H_alpha, CaII IR (854.2 nm) and radial velocity were simultaneously measured and their variability was analysed together with the behavior of Bl. The Zeeman Doppler Imaging (ZDI) inversion technique was employed for reconstruction of the large-scale magnetic field and two magnetic maps of Beta Ceti are presented for two periods (June 2010 - December 2010 and June 2011 - January 2012). Bl remains of positive polarity for the whole observational period. The behavior of the line activity indicators is in good agreement with the Bl variations. The two ZDI maps show a mainly axisymmetric and poloidal magnetic topology and a simple surface magnetic field configuration dominated by a dipole. Little evolution is observed between the two maps, in spite of a 1 yr interval between both subsets. We also use state-of-the-art stellar evolution models to constrain the evolutionary status of Beta Ceti. We derive a mass of 3.5 M_sun and propose that this star is already in the central-helium burning phase. Taking into account all our results and the evolutionary status of the star, we suggest that dynamo action alone may not be eficient enough to account for the high magnetic activity of Beta Ceti. As an alternate option, we propose that it may be an Ap star descendant presently undergoing central helium-burning and still exhibiting a remnant of the Ap star magnetic field.Comment: 10 pages; 5 figures; 3 table
    • …
    corecore