
tv)fc^o v A 

K-fdenl i f ic Data Processing Center - CETIS J t ø 



fri 

mKîBTii 
fei t4?Î Susi 

LEGAL NOTICE 

Si 
"ϋί 

fea« 
pp 

This document wee prepared under the sponsorship of trie Commission 
of the European Communities. 

Neither the Commission of the European Communities, its contractors nor 
any person acting on their behalf : 

Make any warranty or representation, express or implied, with respect to the 
accuracy, completeness, or usefulness of the information contained in this 
document, or that the use of any information, apparatus, method, or process 
disclosed in this document may not infringe privately owned rights: or 

Mil 
Assume any liability with respect to the use of, or for damages resulting 
from the use of any information, apparatus, method or process disclosed 
in this document. . yiuhn 

at the price of FF 35.— FB 350.- DM 28.- Lit. 4 370 FI. 25.25 

When ordering, please quoto the EUR number and the title, which 
are indicated on the cover of each report. 

; « « 
•Mr 1 

Ä : ν ί κ η n j» ; 

ka-mm 
' .»I t '»*. . 

i ■ili·;««» 'ί !·:*.#·».: tf k 

Printed by SMEETS 
Brussels, April 1969 íz*' «ni»'/ 

This document wae reproduced on the basil of the best available copy. 

iW«tf 



EUR 4254 e 

EUROPEAN ATOMIC ENERGY COMMUNITY - EURATOM 

ORGEL DYNAMICS 

by 

W. BALZ, C. BONA, A. DECRESSIN, H. D'HOOF, F. LAFONTAINE 

and J. NOAILLY 

i 

1 9 6 9 

ORGEL Program 

Joint Nuclear Research Center 
Ispra Establishment - Italy 

ORGEL Project 
and 

Scientific Data Processing Center - CETIS 



ABSTRACT 

During the years 1966, 1967 and 1968 different studies were 
undertaken, in the frame of tbe ORGEL project, in order to investigate 
and to analyse tbe stability and the dynamic bebaviour of an ORGEL 
type reactor coupled to a 250 MWeg power plant. 

In tbe first part of tbe studies tbe heat exchanger attacbed to tbe 
reactor is a drum boiler. Tbe model of simulating tbe power plant is 
explained. 

The studies have been taken up again at the request of the 
industrial group participating in tbe "ORGEL Prototype Con-test". Ac­
cording to their cboice the heat exchanger investigated is of tbe Benson 
type. 
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ORGEL DYNAMICS *) 

I. INTRODUCTION 

During the years 1966. 1967 and 1968, different 
studies were undertaken, in the frame of the ORGEL project, in 
order to investigate and to analyze the stability and the 
dynamic behavior of an ORGEL-250 MVe power plant. This report 
presents the sum of the effected work. 

1. First part of the studies 

The different prototypes ORGEL studied till now 
were characterized by a weak intrinsic stability; either they 
were slightly instable, or little stable· The following 
situations might occur: 

- The stable reactor with its initial core becomes 
instable when its core is reaching the equili -
brium, the fuel temperature coefficient being 
always negative and the coolant temperature 
coefficient always positivée 

The reactor is stable even at the equilibrium, 
but the coolant temperature coefficient is always 
positive· 

The reactor is still more stable, the two 
temperature coefficients being negative. 

This situation led to search what might be the 
influence of the stability of the control-system design, and 
whether there was a clear advantage to choose a stable 
prototype, this by reducing the moderation ratio, which involves 
a loss of fuel burn-up and some technological difficulties in 
order to reduce the lattice pitch. 

*) Manuscript received on 3 January 1969· 



In this first part, then, the reactor stability 
aspect has been emphasized. After having designed a control 
system for the instable core, it has been searched which 
simplifications might be brought to this system when this core 
becomes stable. An analytic study has enlarged some results 
obtained during the analogue computation; it is reported in 
the Appendix of this report. 

The power plant attached to the reactor has 
been defined from hypothesis chosen for the sake of simplicity 
but assuring a satisfactory run of the power plant from 
technological and economical points of view: 

The complex and expensive solutions (by-pass 
on exchangers and pumps, variable speed pumps, 
control valves) have been rejected; the loop 
is a constant primary flow loop, without by­
pass and pump speed control. 

The heat exchanger is a natural circulation 
drum boiler· 

- The control program must ensure the most 
stable variations: 

. in the primary, the smallest possible 
temperature variations in the channel to 
limit stresses in the cladding and in the 
channel; these problems have formed the 
subject of distinct studies because they 
concern local variables; 

. in the secondary, the smallest variations 
of steam conditions: the steam temperature 
variations limit the change of speed of the 
turbine charge, the maximum admissible 
temperature variation at the turbine is in 
the range of 3°C/min., pressure variations 
may not be superior to maximum pressure 
ratios of classical pumps (ratios about 1,4). 



This first part presents the model of simulation 
of the power plant, i.e. reactor, loop and drum boiler, 
including the regulating system for the instable core; this 
regulating system will be justified when the analogue computation 
results will be reported. This model has completely been 
retaken in a digital code described in the Appendix, where all 
the numerical valves used can be found* 

2. Second part of the studies 

The studies have been taken up again at the 
request of the industrial group participating to the "ORGEL 
prototype contest"; they enter in the frame of a preliminary 
design. 

The power plant hypothesis have been deeply 
modified by the choice done by the industrial group of 
Benson-type heat exchangers equipped with primary by-passes; 
this has justified new studies and another design of the 
control system. Indeed, the transient behavior of the Benson 
heat exchangers is very different from the drum boiler and does 
not allow to extend the conclusions from one case to another. 
Its fast responses, because of weaker fluid quantities, and 
its variable behavior according to the power level (in 
contrast with the drum boiler, which presents a true internal 
stabilization because of its recirculation), are so that its 
dynamical behavior involves that of the whole plant. 

The aspect of the plant seen from the reactor 
is rejected to the background; this is also due to the fact 
that the studies of the first part showed that the ORGEL 
reactor stability had not a determinant influence on the 
regulating system; however, as the stable reactors presented 
a behavior clearly more favorable in case of control loss, it 
had been chosen for the prototype a weak moderation ratio. 
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As in the first part, the power plant is fore­
seen for running as basic plant, and contains four identical 
loops. The group has decided on the following operating 
conditions: 

Reactor side 
The coolant flow is constant; the output 

temperature is held to its set value. 

Heat exchanger side 
The steam temperature and the steam pressure 

are held to their set value. 

This second part will not present the test 
results of the regulating design defined by the industrial 
group. It will mainly share in the original developments 
from EURATOM, which have been necessary for the representation 
of the Benson heat exchanger, and set off the conditions which 
have to be respected if one will design an efficient control 
and regulating system. 



II. FIRST PART 

1. The mathematic model 

1.1. Introduct i on 

This paragraph resumes the mathematic model 
for the simulation of the dynamic behaviour of the power plant. 
This model was originally derived to simulate the system on an 
Analogue Computer, but, as presented here, is quite general and 
has been utilized for numerical computation as well (see 
Appendix). 

The validity is limited to the study of 
power excursions ranging from 25% to 100)6 of full nominal power, 
and of disturbances which do not change the neutron flux shape 
or the temperature distribution shape in the reactor, since a 
point-model is used for all equations related to the reactor. 
In the heat exchanger, a finite-difference approximation of the 
original equations is necessary, due to the important masses 
and transit time involved. 

The validity of these assumptions have 
been verified by computation. 

Section 1.2. will discuss briefly the 
formulation of the reactor kinetics and the thermal equation 
in a reactor channel. 

Section 1.3* gives the derivation of the 
equation related to the heat exchanger, which is of the natural 
circulation type· 

Section 1.4. gives the equations and a 
discussion on the regulator mechanism. 

The turbine is not simulated, assuming that 
its time constants do not influence the dynamical behavior of 
the power station. 
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1.2. The reactor simulation 

1.2.1» Symbols for the reactor equations 

C. = delayed neutron precursor concentration 

(of species i) 

2H = reactor length 

h = reactor power density 

K = effective reproduction constant 
eii 

1 - neutron lifetime 

n = neutron thermal flux 

ρ = effective periphery for heat transfer 

R = reactor radius 

r = radial distance of a channel from core 

center 

S = effective cross­sectional area 

Τ = mean temperature 

Τ = coolant temperature outlet 
o 

Τ = coolant temperature inlet 

t = local temperature of coolant 
c 

t = local temperature of fuel 
u 

t = time 

U = coolant velocity 

V = core Volume 

V = channel power 

ζ = distance along channel measured from center 

°( = heat transfer coefficient can to coolant 

0¿ = temperature coefficient of coolant 

<*u 
= temperature coefficient of fuel 

A. = delayed neutron fraction of species i 

X. = decay constant for latent nuclei of 

species i 

/* = heat capacity of unit reactor volume 

Subscripts 

c indicates quantities applying to coolant 

g indicates quantities applying to can 

o indicates initial conditions 

s indicates value at the surface 

u indicates quantities applying to fuel 
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Δ is used for the difference between the actual value of a 

variable and its steady­state value (denoted by the subscript o) 

or between two steady­state values of the variable. 

The reactor simulation involves two parts: 

­ the reactor neutron kinetics; 

­ the heat transmission in the reactor. 

1.2.2. The reactor neutron kinetics 

The kinetics equations are given for a 

one­point model and thus are spatially independent. 

In this study, the effects of moderator 

temperature and Xenon poisonirg are neglected because of their 

long time constants (about ter minutes for the moderator 

temperature, some hours for the Xenon poisoning) in comparison 

with the other effects to occur. A constant coolant flow is 

considered. 

The neutron flux and the power distribution 

in the reactor satisfy the diffusion equation for one diffusion 

group and six groups of delayed neutrons. 

<»·*> ^ ­ — — τ
1

— ­<*> ­ i h W * > 

6 
where fi = ¿χ fi± 

V(t) 
n(t) « —■*­ : Κ constant < 1 takes into 

account that all the fission power is not 

removed by the coolant. 
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dC (t) K (t) A 
(1.2.) —4r- -

 fff
 J n(t) - V C,(t) 

C^t) are: 

The steady­state values of K ..(t) and 

eff 

K° « 1 by definition 

Λ· o ' i™ 
C° = from Eq. (2.2.) 

Assuming that the temperature coefficients 

are independent of the temperatures and of position in the 
(1) 

reactor 

(1.3.) V f
( t ) =K

eff
 +
< — f ­ ^

 +
 *c 

Γ (t ­t°)n
2
 dv [ (t ­t°)n

2
 dv 

J u u J c c 

Γ
 a

„
 c

 Γ * 
J n dv J n 

2
 dv 

dv element of volume varying in fuel and 
/ o \ coolant temperature by amounts út =(t ­t ; 

* u u u 
and At » (t ­t°). 

c c c 

n being the thermal neutron flux at the point 

dv and we assume that the temperature 

deviations do not modify the nuclear 

characteristics· 

If, in a certain range, we assume that the 

relative distribution of temperature in the reactor remains 

approximately constant, the temperature at a given point 

maintains a fixed ratio to the value at any other point} Eq. 

(1.3·) may be written: 

(1.4.) K (t) = E» +OC U AT*(t) [f ̂  n\J Γ „2 dvj 
u ' 

+
 *c

 Ä T
c

U )
 V ΪΤΤ n 2 d v / / "2 dv 

c / 
(l) oC and oc can be interpreted as averaged over the reactor u c 

so that a light modification of nuclear characteristics by 
temperature can be taken into account. 
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where ΔΤ*(t) and AT*(t) are the temperature changes at any 

chosen point or the mean values of given temperatures which 

will be defined later, evaluating for the reactor the bracketed 

expressions which are constants independent of the temperature 

changes. 

1.2.3« The heat transmission in the reactor 

Since a one-point model is used for the 

kinetic equations, it is unnecessary to establish a spatio -

temporal thermodynamic model dividing the reactor into axial 

and radial zones and that is furthermore supported by the 

fact that the transit time delay of the coolant through the 

core is very short, about half a second. 

Considering the heat balance for each of 

the elements of the cell shown in Fig. 1.1*, the equations 

determining the fuel cladding and coolant temperatures may be 

written as: 

*T 

(1.5·) A — Γ Γ - W - A(T -T ) 
u it u g 

*T 
(1.6.) L· — r ? = A (T -T ) - B(T -T ) 

' g at u g g c 

3T ÍT 

/> -f- = Β (Τ -Τ ) - /· U — - ° -

■'c dt g c 'c dz 

with /*- , M- , U. heat capacities per unit volume of fuel, 

cladding and coolant in the channel, and where A and Β are 

heat transfer coefficients and the coolant flows with the 

velocity U in the positive ζ direction. 

A and Β are obtained from the steady -

state. Eqs. (1.3·) and (1.6.) give: 

0 = V° - A(T°-T°. 
ν g) 

O = A(T°-T°) - B(T°-T°) 
u g g c 
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then: 

o o 

V _ v i 
■ , Β = — — — — 

„o _o _o _o 
Τ ­Τ Τ ­Τ 

u g g e 

The term >T / *z creates some d i f f i c u l t y , 
c 

but, assuming that the time constant of the coolant perturbation 

i s much longer than the t r a n s i t time of the coolant, we may 

write i t a s : 

T ­T. 
o i or 
2H 

Τ - Τ . Τ .+Τ 

„ where Τ = ­ , to obtain: 

Η c 2 
3Τ 

( 1 . 7 . ) Α —Tr
2
· = Β(Τ ­Τ ) ­ C(T ­Τ. ) 

' c dt g e c i 

V v° 
where C = T ­ T. 

c i 

Ve must then rewrite the previous system of 

equations in terms of d i f ferences between the actual and steady­

s t a t e va lues : 

d ÛT 

( 1 . 8 . ) Λ —-τ— ­ AV ­ A( ΔΤ ­ ΔΤ ) 

u dt u g 
d AT 

( 1 . 9 · ) L TT­
8,

 = A( ÒT ­ ΔΤ ) ­ B( ΔΤ ­ ΔΤ ) 

~ g dt u g g e 

d ΔΤ 

( 1 . 1 0 . ) A ­—­£· = Β( ΔΤ ­ ΔΤ ) ­ C( AT ­ ΔΤ., ) 

' c dt g c c i 

In order t o obtai.i the real r e a c t i v i t y in 

s t e a d y ­ s t a t e condi t ions , we must evaluate the two following 

quant i t i e s of Eq. ( 1 . 4 . ) : 

( l ) I t i s the Same argument which allows to consider a s i n g l e 
average uranium temperature and ignore the var iat ions through 
the fuel element. 
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(1.11.) 

(1.12.) 

First, we must establish the equations 
giving the steady-state local temperatures of coolant and fuel. 

To investigate the process of heat exchange 
between the fuel rods and the coolant, a dz length of one 
channel is considered. Vriting the heat balance for each of 
the elements of the cell shown in Fig. 1.1. gives: 

a) h(r,z)S dz » A U(r)dt (r,z) u c c 

h(r,z) is proportional to n(r) n(z) 

U(r) is proportional to n(r) 

then dt = a n(z) dz (1.13·) 
c 

where a is a constant for a specified power level. Integrat­
ing the two parts of Eq. (1.13·) gives: 

t (ζ) - T. m a N(z) 
c ι 

where N(z) = ƒ n(z)dz 
J-H 

and writing in differences between two steady-state values, we 
get: 

(1.14.) At (z) - ΔΤ. « Aa N(z) 
c i 

b) A U(r)dt (ζ) - o<(r)p dz t (r,z) - t (ζ) 
c c g L β c 

t (r,z) is rather independent of r, as it was verified for 
ORGEL reactors when the flows in the channels are regulated 
to obtain the same temperature span; thus wè must assume 
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that c<(r) is proportional to the velocity and write with (1.13·): 

t (ζ) ­ t (ζ) = bn(z) (1.15.) 

g c 

where b i s a constant for a specified power level 

h(r,z)S 

c) t
S
( r , z ) ­ t (z) = ¿ ­ ( I . I6 . ) 

u » g r c pu 

h(r,z)S 

d) V«",*) ­ t^(r.z) = ¿ ^
 U

 (1.17.) 

Combining Eq. (I.I6.) and (1.17·) gives: 

t (ν,ζ) ­ t (ζ) » cn(r) n(z) (I.I8.) 
u g 

where c is a constant for a specified power level· 

Combining Eqs. (1.15·) and (I.I8.) gives: 

(1.19·) At (rtz) ­ At (z) = Ab n(z) ♦ Ac n(r) n(z) 

u c 

Let us also calculate the averaged temperatures 

of coolant and fuel over the channel. By definition, the averag­

ed temperature of coolant in any channel is: 

A T
c « 2ÏÏ JmU

 At
c
(
*
)dz 

Substituting Eq. (l.l4.), we get: 

ΛΗ 

(1.20.) AT = AT. + 4n / N(z)dz f
i * & ƒ_"Hi 

By definition, the averaged temperature of 
fuel in the channel of radius r is: 

o 
1 /"" ÄT (r ) » -ri / At (r ,z) u o 2H / „ u o' dz 

Substituting Eq. (1.19) gives: 
•H rH 

(1.21) ΔΤ (r ) ­ ΔΤ + I S / n(z)dz ♦ £§ n(r ) f n(z)dz 
u o c

 aii
J­H

 aM
 ° J­H 
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Let us now developòT* and AT* 

c us 

AT* = J At n
2
dv / J n

2
dv 

ΔΤ
« * /

 ò t
u

 B
*

dT
 / J "

2dv 

Eqs. ( 1 . 1 1 . ) and 1 .14. ) g ive: 

AT* = ƒ J n 2 ( r ) n 2 ( z ) [ATjHfeN(z)J . rdrdz If f n 2 (r )n 2 (z )rdrdz 

Separating the two space variables and 
subst i tut ing Eq. ( l . l 8 . ) using the notat ion: 

( 1 .22 . ) γ = 2H / n 2 (z)N(z)dz / / n 2 (z )dz ƒ N(z)dz 
, c J-H J-H y-H 

gives: 

( I . 2 3 . ) AT* =aT. + V (AT - AT.) 
c i ec e i 

Eqs. ( 1 . 12 . ) and 11.19. ) g ive: 

/ / n 2 ( r ) n 2 ( z ) I At (z) + Abn(z) + Ac(n)(r)n(z) rdrdz 
AT* = JQ J-H L ? J 

u „ R rli 2 2 
(r)n (z)rdrdz / ƒ »' 

./O J-H 
ƒ n 3 (z )dz ƒ n 3 (r )rdr rH / H 

ΔΤ* = At + Ab - ^ S ♦ Ac . ^ J
 n ( z ) d z

 / /
 n ( z ) d z 

/ η (z)dz / η (r)rdr 

J-Η JO 

From Eqs. ( 1 . 2 1 . and I . 2 3 . ) and using the 

notation 

J n
3
(r)rdr / ί η ( 1 . 2 4 . ) n í

r
0 ) ­ / n

J
í r )rdr / / n

2
(r )rdr 

Í
H

 1 / / H
n 2 ( Z ) d Z 

( I . 2 5 . ) ν ­ 2H J n
3
(z )dz '

 H 

/_H
 n U ) d Z 
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we obtain: 

( 1 . 2 6 . ) ΔΤ* » AT, + γ (AT ­ AT J + γ f AT (r ) ­ ΔΤ 1 

u i l e c i Ju ι u o cJ 

ΔΤ* and ΔΤ* are two temperatures l inked 
c u 

l i n e a r l y to the averaged temperatures of coolant and fuel of 

the channel of radius r defined by Eq. ( 1 . 24 . ) and ca l l ed th< 

representat ive channel. 

Taking back Eq. ( 1 . 4 . ) , we must write in 

dynamic condi t ions: 

ι* *n \ ν i+\ v°** *-< AT*(t )** AT*(t) 

(1.27*) Κ „ ( t ) = Keff u u
 Ä

c c 

e n 

where ΔΤ* and AT* are expressed by Eqs. (1.26.) and (1.23*) and 
u c 

the variations in the time of AT and AT given by the system 

u c 

(1.8., 1.9«, 1.10.), the steady­state values corresponding to 

the so­called representative channel. 

The complete set of thermal equations is thus 

constituted by Eqs. (1.27., 1.26., 1.23., 1.8., 1.9·, 1.10.). 

For a cosine axial neutron flux, we have 

n(z) = cos — ζ and from Eqs. (1.25*) and (1.22.), we must 
•an 

calculate: 

4/3 

The representative channel is obtained from 

the radial neutron flux distribution calculating the ratio of 

Eq. (1.24.). It is included between the central channel and 

the channel of medium power. Ve must then write Eq. (1.27), 

assuming the coolant temperature inlet to be constant: 

(1.28.)
 K

.ff
( t )

 *
 K
eff * < * ' ν

Δ Τ
ν

+
<

Δ Τ
ο 

where : 
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1.3» The drum boiler simulation 

The heat exchanger is a drum boiler with 
natural circulation. The main circuit of the power station 
consists of two loops. 

1.3.1. Organic aide 

As well known, the equations describing the 
thermal behavior of two fluids which exchange heat through a 
wall constitute a partial derivative system which states that, 
for every elementary volume of both fluids, the mass, momentum, 
energy are conserved, i.e., for the mass: the net difference 
between the masses which go in and out from the elementary 
volume equates the variation in time of the mass being in the 
volume (fixed walls are assumed); the energy and momentum 
conservation laws can be expressed in an analogue way. 

As a partial derivative system cannot be 
handled by a traditional analogue computer, such a system has 
been reduced to the "finite differences" in space, that is, the 
heat exchanger has been divided in a number or zones or "cells" 
of finite volume for each of which the conservation equations 
has been written in global form; the equations obtained are 
thus in terms of "mean variables". 

Fig. 12 gives a scheme of the cells in 
which the heat exchanger has been divided, the number of cells 
being limited by the amount of analogue elements required. 

It must be remembered that a lumped 
parameter model of this kind described very well the behavior 
of the physical system at low frequency but finds its limit at 
high frequency where it behaves as a low band filter, that is, 
the high frequency transients of the physical system will appear 
smoothed when studied with a finite difference model as this· 

In the primary, the specific heat of the 
organic liquid and its density can be considered as remaining 
constant. 
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The heat transfer coefficient different 
values have been assumed from zone to zone (superheater, boiler, 
economizer), but the same value, constant in time, has been 
taken for the cells in the same zone as there the velocities 
and the heat exchanging surfaces are the same. 

The behavior of the primary is described by 
the energy balance equations: 

d TOL 
(1.29.) VO. C ρ - ~ · = VOL C(T0L -TOL ) - HLOS S^TOL^TPAj 

where: 

i is the index related to the zone, (increasing in the 
direction of the organic flow) 

VO. is the zone volume 
1 

ρ is the density 
TOL. is the average organic temperature in cell i 
VOL is the organic mass flow 
C is the organic specific heat 
HLOS is the heat transfer coefficient 
S. is the wetted surface in the cell i 

For the first zone, the variable TOL. Λ has 
l-l 

to be replaced by the delayed outlet temperature of the reactor0 

The approximation can be improved assuming C 
and 0 as constant in time but varying along the heat exchanger 
and taking for each cell the value corresponding to its steady-
state temperature. In any case, a comparison of the steady-
state temperatures computed with this model, with the steady-
state temperature at the same powers computed with a digital 
code which takes account of the dependence of the organic liquid 
physical properties on the temperature, has shown that the error 
done in this way is reasonably low (see next section). 
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1.3.2. Vall equations 

The wall is considered only as a thermal 
capacity in which a certain amount of heat can be stored and 
represents a time constant between the primary and the 
secondary side. 

For each cell, the mean temperature of the 
mass of steel which is interested in the heat transfer is 
computed by writing energy conservation balance between the 
stored heat and the difference between the heat transferred from 
the primary and the heat transferred to the secondary. 

No heat transmission between adjacent cells 
along the wall has been considered. This can be justified 
considering the big difference between the heat fluxes along 
and across the pipe walls. 

The heat balance equations for the wall is: 

d ΤΡΑ. 
(I.30.) AP *ROP *CP TT—1· = HLOS*S. (TOL.-TPA.) -

1 i at 1 1 1 

- HLV.*SV_, (TPA. - TSEC.) 1 i 1 i 

AP is the wall cross-section 
ROP is the density of the wall 
CP is the specific heat of the wall in cell i 
HLV is the heat transmission coefficient between wall and 

secondary 
SV is the wetted perimeter at the secondary 
TSEC. is the average temperature at the secondary in cell i 

All other symbols are as defined for Eq. 
(I.29.). 

To obtain a system of equations suitable for 
computation, equations (1.29.) and (I.30.) have to be developed, 
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giving to the indices values related to the physical dimensions 
of the heat exchanger· How this can be done is illustrated in 
figures 1.3*· 1*4. and 1.5* 

1.3*3» Secondary side 

a) Economizer 

Vhat has been said for the primary side 
still holds true for the secondary side in the economizer, where 
we have one liquid phase; the only difference is that the 
secondary fluid mass flow rate is no more constant but varies 
following the power delivered to the turbine* 

Note that, if the boiler free level is to be 
kept constant, as we assume, during transients the mass flow in 
the economizer will differ from the steam flow to the turbine. 
In our model, while the boiler free level is supposed to be 
constant, the difference between the mass flow in the economizer 
and in the superheater has been assumed to be negligible. 

The mass flow rate, which is supposed to 
be the same in the economizer's cells, is computed as follows: 

POVER 
WREQ = ¿2f£ , 

where POVER is the power delivered to the turbine in Kcal/sec 
and AH the difference between the feedvater and steam enthalpy 
in Kcal/kg. 

The cell's temperature is deduced from the 
energy conservation law. These are written for each cell in 
Fig. 1.8., where the usual schematic drawings, the list of 
symbols and the values of the constant coefficients are also 
represented· 
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To simulate the effect on the primary side 
of an eventual boiling in the economizer, a circuit has been 
added to prevent that the temperature of the last cell in the 
economizer become greater than TSAT(p), the saturation temperature 
at the secondary pressure. 

b) Natural circulation boiler 

Fig. 1.9* gives a schematic drawing of the 
paths of the primary and secondary fluid in the boiler· 

To have a detailed description of the 
behavior of the boiler, this should be divided into cells, and 
for each the conservation laws should be written (for mass, energy 
and momentum). 

Even if the slip ratio in the riser is dis -
regarded, and the water-steam mixture is considered as homogenous, 
the equations will be highly non linear and present many 
computational difficulties, in particular for the analogue 
computer· 

But, for the simulation of a power station, 
the local behaviour of the variables in the riser is not 
essential, since the interest lies in a realistic estimation of 
the recirculation ratio VR (i.e. the ratio between the mass flow 
rate in the boiler and in the economizer) during the overall 
transients. 

This ratio, which is of no importance for 
steady-state calculations (as the heat-transfer coefficients in 
the boiling region do not vary significantly with the speed of 
fluids), becomes significant for transients as the amount of 
steam generated can be different from the feedwater mass flow. 

Rigorously, the recirculation ratio can be 
defined only for steady states, as during transients the mass 
flow is not constant, but determined by the local density variation: 
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2JÍS = . AR l£ ax *" at 
where AR is the riser cross-section. Nevertheless, provided 
there are no local instability phenomena, as the hydraulic 
time constants are much shorter than the thermal ones, it is 
reasonable to disregard the local variations of VR along the 
riser and to consider the recirculation flow as being in every 
moment at the steady-state value corresponding to the driving 
force in that moment. 

As, at steady-state, the sum of the friction 
head losses along all the boiler must equate the difference of 
weight of the liquids in the downcomer and in the riser, we can 
write: 

VR 2> KARO^, - RO . )~: (1.31·) 
downcomer riser 

where K is an unknown coefficient depending on the geometry of 
the system (dimensions and head losses), and o( , which has been 
taken equal to 0.5, is an exponent which takes account of the 
dependence of the head losses on the flow rate. 

After a few manipulations from (1.31·), we 
get: 

•i VR - L . T*VS1PT 
[VL + X.VS(P)] VL 

where X i s the mean qual i ty in the boi ler ( m a s s ° f a t e a M ) 
V. total mass / 

VL the liquid specific volume and VS the steam specific volume 
which depends on the secondary pressure P. 

The steam water mixture which fills the 
riser has been considered a homogeneous fluid whose temperature 
is always equal to the saturation temperature corresponding to 
the system pressure P; the riser itself has been considered as 
a whole (one cell) and an average quality over it has been 
calculated by writing the energy and mass conservation laws as 
shown in fig. 1.10. 
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In fig. 1.10., the energy conservation laws 

have been written in terms of mean enthalpy and mean density; 

we rewrite them here to show how they can be manipulated to get 

a form suitable to the analogue machine: 

MASS) AR.LR 4f = VR+VREQ­VOUT 
at 

(1.32.) 

ENERGY) AR.LR .
 d ( P

'
I M )

= VR.ILIQ+VREQ.CLVE.TLVEC(OT)­VOUT IM + Q 

dt 

(1.33*) 

where : 

AR = riser cross­section (m2) 

LR = riser length (m) 

Ρ = riser mean density (kg/m3) 

IM = riser mean enthalpy (Kcal/kg) 

ILIQ = saturated water enthalpy (Kcal/kg) 

CLVE ■ water specific heat (Kcal/kg°C) 

TLVEC(OT) = water temperature at the outlet of the economizer (°C) 

Q =¡ heat transferred from the wall (Kcal/sec) 

VR s downcomer mass flow rate (kg/sec) 

VREQ = economizer mass flow rate (kg/sec) 

VR­t­VREQ = mass flow rate into the riser (kg/sec) 

WOUT = mass flow rate from the riser (kg/sec) 

Multiplying Eq. (1.32.) by IM and substituting 

it from Eq. (1.33.), we get: 

AR.LR.Ρ .
 d
4r = VR.ILIQ+VREQ.CLVE.TLVEC(OT)­(VR+VREQ).IM+Q 
αχ 

and introducing the following relations: 

Ρ = 1/VSPEC(P,X) = 1/ [(1­X)VL+X.VS(P)] where X « 1 

IM «= ILIQ(P)+CLAT(P).X 
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where : 

VSPEC(P,X) is the specific volume of the mixture (m3/kg) 
VL is the specific volume of the saturated water (m3/kg) 
VS(P) is the specific volume of the saturated steam at 

pressure Ρ 
Ρ is the pressure of the system (kg/cm2) 
ILIQ(P) is the enthalpy of the saturated liquid at pressure 

Ρ (Kcal/kg) 
CLAT(P) is the latent heat at pressure Ρ (Kcal/kg) 

we have: 

AR.LR d ILIQ AR . LR d(CLAT.X) 
VL+X.VS * dt + VL+X.VS * dt 

Q + VR.ILIQ + VREQ.CLVE.TLVEC(OT) - (VR+VREQ).(ILIQ + CLAT.X) (1.34.) 

The quantities VS, CLAT and ILIQ which appear 
in Eq. (I.34.) are functions of Ρ only and can be approximated 
with the following expressions : 

VS = AVS + BVS.P 
CLAT = ALAT + BLAT.Ρ 
ILIQ = AIL + BIL.Ρ 

where AVS, BVS, ALAT, BLAT, AIL, BIL are constant coefficients 
which have been computed imponing that Eq. (ΐ·35·) fit at the 
best the values of VS, CLAT and ILIQ obtained from the steam 
tables, for Ρ varying from 50 to 100 kg/cm2 (which is the 
pressure range of interest). 

Figs. 1.11., 1.12., I.13., the real values 
of these functions, are compared with the values given by Eq. 

(2) (ΐ·35·) * As can be seen by the maximum value of the errors 

(1 ) For numerical computation, these could be obtained by tabulation 
of the steam tables or by higher order polynomials· 

(2) These plots have been obtained directly by the CALCOMP plotter, 
using a program which computes the polynomial of order up to 
20, which fits at the best a given set of points· 
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this fitting is quite satisfactory* By substituting the 

expressions (1.35·) into Eq. (1.34.), we finally have the wanted 

equation: 

**'** . (BIL+BLAT.X) 4? ♦ T ¿ ¥ ^ ­ CLAT . # 
VL+X.VS * dt VL+X.VS dt 

« Q+VR (AIL+BIL.P) + VREQ.CLVE.TLVEC(OT) ­

(VR+VREQ).(AIL+BIL.P+X.(ALAT+BLAT.P)) (I.36.) 

Note that, with respect to Eq. (I.36.), the 

awn q 

where (see c)). 

dP 
term ­—· is a known quantity, its value being determined else ­

dt 

The term „f^HL· · (BIL+BLAT.X) . ~ in 

VL+X.VS dt 

Eq. (1.36.), which is null in steady state, is very important 

during transients, as it represents the heat which must be given 

to (or taken off from) the mixture in the boiler to maintain it 

at the saturation condition when the pressure changes (this 

because the amount of water involved, in this type of boilers, 
Aí) 

is very large) . 

c) Upper Dome 

Since we assume to have a perfect regulation 

of the free level in the boiler upper dome, the volume of the 

upper dome is to be considered constant in time. How large this 

volume is does not seem to have great influence on the transient 

behavior of the system, at least until it is not very large or 

very little, and the transients are not too rapid (the steady­

state configuration does not depend on this parameter). 

(l) The effect of this term is to prevent any quick variation in 
the system pressure. Suppose in fact that Ρ has a tendency 
to rise, then this term will make X decrease because a part of 
the heat, which used to be spent into vaporization, has to be 
spent in rising the liquid temperature, and a decrease in X 
will decrease also Ρ (see c)) and vice­versa:if Ρ has a 
tendency to decrease, this term will increase X because some 
of the heat which was in the liquid is released. 
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Ve assume that the steam in the upper dome 

(which is sketched in Fig. 1.9«) could be either saturated or 

superheated, but never subcooled if not for a very short time. 

In the first case, the independent thermodynamic variables to 

be computed are reduced to one (in our model, we have assumed 

the pressure), but a new variable appears: the condensation 

mass flow rate; in the second case (superheated steam), this 

last variable is identically zero, while the independent thermo­

dynamic variables become two (in our model, we have assumed the 

pressure and the steam density, the other being deduced by the 

state equation and the steam tables). The equations written 

are the mass conservation law and the energy conservation law, 

Fig. 1.14. 

Referring to Fig. 1.14·, the exact 

expression for the stored energy would be V ­—■ (RØ.i+P/J) 

dt 

(«1=427 kgm/Kcal), but it is very easy to see that term V ­—■ 

P/J is always very negligible. 

Studying the steam characteristics, it 

turned out that the enthalpy, which is function of Ρ and R0, 

can be very well approximated with an expression of the form 

I = AI + BIPRO . ^ Q (I.37.) 

where Al and BIPRO are two constants whose values were deduced 

by trial fitting of the above expression to the steam curves of 

I against Ρ for different values of RO (Fig. 1.13·)· We further 

assume that ISAT, ILIQ and ROSAT can be approximated as follows: 

ISAT = AISAT+BISAT.P 

ILIQ = AIL+BIL.P 

ROSAT = AROS+BROS.P 

Vhere AISAT, BISAT, AIL, AROS and BROS are 

constant coefficients, the values of which have been determined 

imponing that the expressions (I.38.) fit at the best for 

50 i Ρ «£ 100 kg/cm2, the corresponding functions of P, which can 

be deduced from the steam tables. 
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In Figs. I.l4., I.l6., 1.17«, the real values 
of these functions are compared with the value computed with 
expressions (I.38.); as can be seen, this fitting is quite 
satisfactory. 

By introducing the Eqs.(I.38.)and(l.37·)into 
the energy equation and combining it with the mass conservation 
(Fig. 1.10.), the energy equation can be reduced to the following 
form which is more suitable to the computer: 

V BIPRO 4? = - AI.(X.(VR+VREQ)-VREQ-VC)) at 
+ (AISAT+BISAT.P).(VR+VREQ)) 
- VREQ (AI+BIPR0.(P/R0)) 
- (AIL+BIL.P).VC 

(I.39.) 

eq· 

dRO 
dt 

Eq. (I.39.) together with the mass conservation 

= X (VR+VREQ)-VREQ-VC (1.40.) 

constitutes the set of equations which is to be integrated to 
compute RO and Ρ in the upper dome. The only unknown left is 
VC which is computed as follows: 

Κ . (RO-ROSAT) RO > ROSAT 
WC = \ (1.41.) 

RO ̂  ROSAT l 
The value of K must be chosen high enough to 

prevent RO to become greater than ROSAT for a long time, (how it 
happens can be understood replacing Eq. (l.4l.) into (l.40.)); 
this is equivalent to assume that, as soon as the steam in the 
upper dome reaches the saturation conditions, the condensation 
prevents it from going deeply into the subcooled region, which 
seems reasonable as one regards a practical system. 

Note that Eq. (1.39·) still represents fairly 
well the energy conservation law also when the steam in the upper 
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dome i· at the saturation condition; in fact, in this case, 
for what has been said, RO at ROSAT ad Eq. (1.37) still gives an 
acceptable approximation of the steam enthalpy, as it can be seen 
in Fig. I.l8., where: 

AI + BIPRO ' ROSAT(P) 

is compared with ISAT(P) . 

In practice, it seems that, at the frequencies 
of the transients which have practical interest, the steam in 
the UDper dome is very near to the saturation condition being 
always a little superheated, and this is the reason why the system 
is not affected by the value of K. 

d) Superheater 

It has been supposed to make a negligible error 
assuming to have the same mass flow rate of steam along the whole 
superheater; this is true in steady state, while in transient, 
according to the mass conservation law, there are local variations 
due to the steam density variations in time: 

— " - A ff · 
ax dt 
It was nevertheless verified that, for cases 

of practical interest, the maximum flow variation in the cell 
due to density variation remains below i% of the total flow· 

The mass conservation law is thus reduced 
to the trivial form V(i) - VREQ, where V(i) is the mass flow rate 

th in the i cell and VREQ the mass flow rate into the turbine. 

The energy conservation law is reported in 
Fig. I.18., with the usual schemes and list of symbols. For 
the steam density in the different cells, we have assumed the 
steady-state value at full power. 
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1 Fig. 1.19«, the values of the steam density 
in the different cells and at different powers have been plotted; 
from this figure, one cou'd have the impression that the error 
committed in neglecting the density variations due to pressure 
and temperature variations is not too small. 

In reality, looking at the equations, it is 
clear that the only effect of an error over RO is to modify the 
time constant between the temperature of the wall and the 
temperature of the steam,and the effect on the primary side is 
still attenuated by the time constant between the organic 
temperature and the wall temperature. 

Two transients done, assuming for RO values 
ten times greater and ten times smaller than the real ones, have 
shown no appreciable variations in the system behavior. This 
is due to the fact that, being always very near to the steady 
conditions, the error over RO is highly attenuated by the very 
little value of d "f1* (see Fig. 1.18.). 

at 

The energy conservation law has been written 
assuming, as thermodynamic independent variables, the pressure 
Ρ and the steam enthalpy H(i). For the pressure, we assume 
that it is the same as in the upper dome (we neglect the pressure 
losses due to friction and acceleration). The error we do in 
this way effects the calculation of the temperature of the steam 
in the cell and can be estimated at approximately 0.5°C, as can 
be deduced from Fig. 1.20., assuming that the pressure losses 
over each cell can be evaluated to 0.5 kg/cm2. 

The steam temperature which appears on the 
right hand side of the energy conservation law (Fig. 1.18.) has 
been considered a dependent variable whose value is deduced 
from the steam enthalpy I and pressure Ρ with the following 
approximate formula: 

T(°C) = i,3333 I + 1.0337 Ρ - 686.64 (1.42.) 

where I must be expressed in Kcal/kg and Ρ in Kg/cm2. 
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In Fig. 1.20., the values of the steam 

temperature against the steam enthalpy for different pressures 

have been plotted together with the values corresponding to 

Eq. (1.42.). 

As it can be seen, the approximation is 

good, or at least comparable with the precision one can reach 

in computing the heat transfer coefficients, provided one 

remains in the region from 50 to 100 kg/cm 2 for the pressure, 

and between 25% and 110% of nominal power. 

1.4. The control and regulation system 

1.4.1. Requirements 

The automatic control and regulation system 

must stabilize the reactor which is instable with respect to 

temperature coefficients, and adjust its power level to the 

power demand according to a certain steady­state program. 

1.4.2. Regulator equations and block diagram 

Experiments on the analogue computer have 

shown that the regulation mechanism must be driven by an error 

term which should be a combination of two variables: the 

neutron power and the average temperature of the organic coolant: 

n­η PV ­ PV τ Τ ­Τ 

av avo 
r n­n FW ­ PW η 

--■»[τ* - -ur-*] -*. 
·» ο ο J 

Τ (1.43.) 

ο Ί avo 

where: 

£, is the actuating error 
n is the neutronic power 
PV is the power demand at the turbine 
Τ is the average temperature of the coolant 



33 

Τ » (temperature primary at the inlet of the heat 
a v
 exchanger + temperature primary at the outlet 

of the heat exchanger)/2 

Note that Τ represents the average temperature 

only under steady­state conditions 

R and R are arbitrary gains to be optimized 

1 2 
η , PV , Τ are the values of N, PV, Τ at the nominal 
o o' avo av 

power of the reactor; they can be functions 

of the power 

n­η PV­PV 

The terms ° and ■_, ­ allow to compare 
n FW 

o o 

the extracted power of the reactor to the power supplied to the 

turbine and to adjust one to the other. The power demand PV is 

the product (VREQ.AH) where VREQ is the steam flow and AH the 

enthalpy span from the superheating steam temperature to the 

economizer water input temperature (which is assumed to be œnstant 

according to the reactor power)· The power demand PV is changed 

by acting the steam throttle at the turbine input, which is 

identical to modifying the steam flow, but in a manner to verify 

the previous equality. 

The term in n compensates the fast variations 

of the power, which are impossible to correct with temperature 

signals due to the important time delays (time delay in transferring 

the heat from fuel to coobit: about 3 sec. and transport delay 

time to the mixing main collector: about 10 sec·)· 

The term in T corrects any variation of 
av 

the average temperature; by definition, this is a low­frequency 

action and has little effect on the stability of the system, but 

influences greatly the variation of the thermodynamical quantities 

of the heat exchanger. 

To the error term must be added a pressure 
p
"
P
o 

term defined as ­ R — — an<i intended to improve the pressure 
J P

o 

transient; this term presents a particular interest when ρ is 

a constant according to the power (for a constant pressure 



34 

regulation program). Τ and ρ are two thermodynamical 
avo o 

parameters connected so that the pressure term acts in the 
opposite direction of the term in T ; therefore, its weight 

av 
must be limited· This situation derives from the fact that a 
regulation program for a multiple-loop system is necessarily a 
compromise between contradictory requirements. 

The control-rod mechanism is represented 
by the following transfer function: 

where: 

Ρ is the reactivity introduced by the control mechanism 
S is the differential operator -rr (Laplace operator) 

at 
* is the time constant due to the intertia of the 

mechanism 
R, and R are arbitrary gains to be optimized 

Thus, the position of the control rod is 
changed in proportion to any error created by a power demand 
change or by an internal system transient. An on-off type 
control rod is inadequate, the reactor by itself being inherently 
instable; the presence of a dead zone in that discontinuous 
type system causes the control system to be in continuous 
oscillation. 

The regulation is linear only within limits 
imposed by technology, which must be taken into account: 

- the speed of the control rod has a sharp maximum limitation: 
d* • -~ -^ max. speed of rods at 

- the end-of-run limitations of the control rods must be 
considered as well: 

Ρ ^. max. available reactivity 
o ^. min. reactivity 
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The law of variation of reactivity versus rod 
displacement is assumed to be linear for the computation, as it 
was verified on the computer that (within the limits sentioned 
above) any alternative (section of a sine function) does not 
change significantly the behavior of the control loop. 

A separate mean to set the equilibrium 
point at any desired value between these limits must be avail -
able· 

It must be remembered that, if a reactivity 
disturbance greater than the above value occurs for any 
significant length of time, the regulator looses its ability 
to control the reactor· 

The block diagram for the whole power plant 
control is reported on Fig. 1.21. The detail of the regulator 
is given in Fig· b. and Fig. c , which represent two possible 
servo mechanisms being mathematically equivalent. In Fig. b., 
the actuating error is integrated through an electronic 
integrator; its output and the error signal itself drive the 
control mechanism which acts here as a position servo. In 
Fig. c , the error signal and its derivative (damping term) 
drive a bar mechanism which is a rate servo. 

Eliminating 6. between the relatione (1.43·) 
and (1.44.), it appears that the proportional and integral terms 
are affected to the variables η, Τ and, eventually, p. 

av * ' 
Generally, the proportional terms are the stabilizing terms 
(the terms which improve the transients); the integral terms 
are the reset terms (refer to analogue and analytic results). 

The regulator will be optimized with respect 
to the following parameters: R , R , R , R,, R , and the 
speed and reactivity limits of control rods. The criteria 
for optimality are: 
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a) Minimum overshoot of all variables in transient response, in 
particular with respect to reactivity disturbances« 

b) Minimum time for passing from one steady state to another 
when the power demand is varied· 

c) Minimum time to return to steady state after any disturbance« 

I.4.3. The steady-state program 

In Fig. 1.21., a regulation program sets 
the sum of the reference terms of the Eq. (1.43* ): n and PV 

^ 0 0 
are constants, while Τ and ρ may vary according to a certain 

avo o 
predetermined law (steady-state program) as a function of PV; 
it will be recalled that Τ and ρ naturally will always remain 

avo o 
thermodynamically connected. One of the possible steady-state 
programs of the power plant is reported in Fig. 1.22. (program l); 
- From 100% to 75% of the power, the average temperature of the 

coolant remains constant; the steam pressure rises from 
5315 kg/cm2 to 67 kg/cm2. This range of power is considered 
to be the normal working zone of the plant. 

- From 75% to 25% of the power, the steam pressure is maintained 
constant; the average organic temperature decreases from 
308°C to 289°C. 

The inlet and outlet temperatures of the 
coolant are represented on Fig. 1.22. in the same way as the 
steam inlet temperature at the turbine. Let us remember that 
the assumed steam cycle taken into account for the dynamics 
calculations is without reheating. 

Experimentation made on computer has shown 
that many alternatives, all stables, are possible; in each 
case, the regulation can be driven by Τ (R„ = 0), assuming a 

av 3 
variable reference Τ which depends on the power demand as in 

avo 
Fig. 1.22.; an additional term in ρ - ρ (R =0) where ρ depends 
on the power demand as in Fig. 1.22. always improves the 
regulator performance. 
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The regulator reference is setting to the 
predetermined law (as a function of the power demand signal) by 
a program (see Fig. 1.21a) which could be a set of relays, 
comparators and constant gain amplifiers wired in a permanent 
arrangement or, for more flexibility, a small on-line computer 
(digital or analogue). 

Other static programs studied are reported 
in Fig. I.23. The numerical differences between the two 
programs 1 are explained by the fact that the dynamical studies 
have been executed on two prototype variants where the coolant 
organic span is, either 124°C (Fig. 1.22.), or 104°C (Fig. 1.23.); 
in this last case, the steam pressure rises from 60 to 74 kg/cm2 
when the power decreases from 100% to 75%· The results of the 
study are modified in no way. 

2. The analogue computation results 

2.1. The instable core 

2.1.1. Main characteristics of the channel 

Bundle 19 rods 
Fuel cross-section 31 cm2 
Coolant cross-section 22 cm2 
Moderator area/coolant area ratio 1516 
Length channel 400 cm 
Fuel rod radius 1*45 cm 
Cladding wall thickness 0,88 mm 
Finning ratio 1,9 
Thermal resistance between fuel & cladding l,5°C/w/cm2 
Maximum integral of conductibility 100 w/cm 
Average velocity in the central channel 10 m/sec 
Axial form factor 0,68 
Radial form factor 0,83 
Disadvantaged thermal flux factor 0,85 
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Characteristics of the "representative" channel (the power 

of which being 0,89 the power of the central channel) at 

nominal power 

Removed power 4,65 MW 

Input temperature 266°C 

Output temperature 370°C 

Average cladding temperature T_ 376°C 

G 

Average fuel temperature Τ 672,5°C 

Temperature coefficients of the initial core: 

- Fuel temperature coefficient: °t = - 1,5 pcm/°C 

- Coolant temperature coefficient: oi. = - 0,25 pcm/°C 

c 

Temperature coefficients of the equilibrium core: 

- Fuel temperature coefficient: o< = - 0,45 pcm/°C 

- Coolant temperature coefficient: c< = + 5,6 pcm/°C 

c 

Transport delays of coolant from 

reactor to heat exchanger: 12 and 13 sec. 

2.1.2. The reactor stability 

The prototype stability situations have been 

studied in the parametric plane ( + <?¿ , - o¿ ), examining 

coolant fuel 

the open loop transient response of the reactor to an initial 

positive step disturbance of 50 pern. If the second derivative 

of neutron power versus time is negative, after a time of 100 sec. 

longer than the longest time constant, the reactor is considered 

to be stable. 

The results are reported in Fig. 1.24. for 

the two cases of a thermal resistance of 1.5°C/w/cm2 and 

0.5°C/w/cm2 (the two curves are identical). 

One can see that the irradiated reactor is 

unstable. Thus the prototype requires an automatic external 

control and regulating system. 
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2.1.3» Optimization of the regulator parameters 

After experimentation, the following numerical 

values have been retained (if no speed limitation on control rod): 

R, = 10 m 10 pcm/% variation 

R » 5*10~ ■ 50 pcm/% variation 
5 

ν , . ι ^ 2 sec 

*v inertia 

The regulator inertia K. .. = 2 sec. was 

inertia 

used for computation as a worst case value. 

Fig. 1.25« gives the stability domain of the 

control mechanism versus the gains R, and R , in the linear region 

of its transfer function (i.e. for disturbances which do not reach 

the reactivity speed and amplitude limitation). In the region 

to the left, the mechanism is stable and gives a damped response 

to a step input. In the central region, the mechanism is stable 

but gives a periodical response (overshot) to a step disturbance. 

In the right region, the loop is unstable· 

The working point of the controller should 

be selected in the first region (damped). In fact, in order to 

avoid overshots in the non­linear region, systematic experimental 

investigation has shown that the working point of the mechanism 

should be about a decade to the left of the critical damping line 

as, for example, point l6 if the insertion speed of reactivity 

is limited to 10 pcm/sec. 

Fig. I.26. and 1.27* give the response of 

the system in case of a step disturbance of 50 pern considered 

as a worst case for a small accident (like the drop of a cluster 

in the channel during the fuel handling), not requiring a scram. 

The two figures give the neutron power 

response and the control rod reactivity (position and speed): 
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Fig. 1.26. for a speed limitation of the 
control rods of 10 pcm/sec (equivalent to 
10 cm/sec) and a rod inertia time constant 
of 2 sec. 

Fig. 1.27* for an unlimited speed of the 
control rods· 

During these transients, the temperatures 
do not change significantly. 

2.1.4. Ability of the regulator to control the 
reactor 

The regulator optimized for values of 
temperature coefficients corresponding to the irradiated reactor, 
it is interesting to investigate up to which extreme limits the 
regulator is capable to keep the reactor under control. The 
quantities which affect significantly these limits are: 

The amplitude of the reactivity disturbance 
(linked to the end-of-run limitations of the 
control rods) . 

- The maximum speed allowable for the control 
rods. 

(2) The temperature coefficients 

The limits of efficiency of the system control 
are reported in Fig. 1.28. in the (*¿ , . , ·<_ .) plane for 

w coolant' fuel 
the following values of the control system bounds: 

(1) It is obvious that, if a reactivity disturbance greater than 
the end-of-run values occurs for any significant length of time, 
the regulator looses the ability to control the reactor. 

(2) The temperature coefficients associated with the fuel and the 
organic coolant are not easy to obtain, and there are always 
some doubts on their accuracy. This fact justifies this 
parametric study. 
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Maximum rods speed: 15 cm/sec (e.g. 15 pcm/sec) 

Rod reactivity span from + 200 pern to - 300 pem 
with two sets of four rods: the negative 
reactivity end-of-run of the normal first set 
(-50 pem) commands the release of the second 
group of rods (-250 pem) (see Fig. 1.29·). 

The time constant of rods was taken = 1 sec. 
for this investigation. 

Curves 1 and 2 give the limit above which a 
reactivity step disturbance of 100 and 50 pem cannot be compensated 
by the regulator; curves 3 and 4 give the same limit for a step 
disturbance in the reactor inlet temperature of 10°C and 5°C 
respectively. 

It turned out that the speed would be 
sufficient to control the system up to very high values of°* , 

c 
if the amount of reactivity supplied by the regulator is adequate· 
Beyond the limits of curves 1 to 4, the regulator looses its 
ability to control the reactor for the described disturbance· 

2.1.5. Heat exchangers: accuracy of the dynamic 
computations - Steady-state checks 

The steady-state results have been obtained 
for 100% and 75% of full power, as the equilibrium values of the 
dynamic equations. The steady-state temperature distribution 
for the heat exchanger is reported in Fig. I.30. for 100% power, 
and Fig. I.31. for 75% power. These results have been compared 
with those of a purely static digital computation (using thus a 
different mathematical representation. The agreement (within 
some degrees centigrades) between the results of the two 
computations represent a reliable validity (and accuracy) check 
for the complete analogue simulation. 
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2.1.6. Running at 100% of the power, handling of 
the fuel 

The inserted reactivity law which simulates 
loading and unloading of a fuel element is given in curves IL 
and 1U of Fig. 1.32. In these functions, horizontal segments 
have been abridged significantly to reduce computer time, as 
this does not affect the conclusions. 

The curves 2U and 2L give the neutron power 
transient response, on a developed amplitude scale. It can be 
seen that the power level is virtually unaffected by the 
operation. 

The curves 3U and 3L give the control rod 
position, which can be seen to compensate almost exactly (with 
negligible time lag) the introduced reactivity. During this 
transient, the temperature does not vary. 

2.1.7« Changes in power 

Ve cannot give all experiments achieved on 
the analogue computer; we will restrict ourselves to the 
essential : 

a) Regulation program 1: constant temperature/ 
constant pressure 
Changes in power from 100% to 75% 

During this transient, the power demand to 
the turbine is varied from 100 to 75% and then it is kept 
constant; the rate of variation is 5% per minute. 

Figs. 1.33., I.34. and 1.35 show the 
evolution of the reactor and secondary variables. 
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The coolant temperature and the average 
cladding temperature reported are the same as those of the 
central channel; this is not the case for the average fuel 
temperature: in transient state, that one of the central 
channel differs from that one of the so-called representative 
channel by a higher amplitude; it will be determined knowing 
that, in steady state, the span (T - Τ ) is proportional to 
the channel power· 

However, the two most significant variations 
on the reactor side during all dynamical attempts are the 
driving variables, i.e. the neutron power and the input coolant 
temperature (for a constant coolant flow) which can be taken 
as input data for a spatial-temporal code in order to 
particularly determine the local variations of the cladding 
and fuel temperatures· 

Changes in power from 100% to 25% 

Vithout pressure feedback: 

The rate of variation is 5% per minute« 
Fig. I.36. shows the average organic temperature (T ) ewiution 
and Fig. 1.37« the pressure transient; it can be seen that, 
even through the rate of change relatively slow, the pressure 
overshot is far from being negligible· 

The rate of variation is 0,5% Per minute. 
This transient can be considered as a sequence of equilibrium 
states. Fig. I.38. gives the evolution of Τ , and Fig. 1.39* 
gives the evolution pf pressure, both versus time. Fig. 1.40. 
and 1.4l. show the Τ and pressure variation law versus the 

av 
power demand; it can be easily observed that, on the analogue 
computer (and, very likely in reality), it is very difficult to 
maintain the pressure rigorously constant. This situation is 
due to the fact that there is no direct action of a pressure 
measurement on the regulator (R =0). A definite improvement 
on this situation can be obtained by introducing a term in R . 
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Vith pressure feedback: 

The rate of variation is 5% per minute. 
Same regulation program with additional pressure feedback; R 

Ρ ~ P0 -* 
is set to 0,5% and a pressure term in — P ( > is added to error £ ; 
ρ is not a constant but follows the law expressed in Fig. 1.23·, 
curve 1. 

In Fig. 1.42., curve 1 gives the pressure 
transient without pressure feedback; curve 2 gives the same 
transient with the pressure feedback introduced in the regulator. 
The benefit of the pressure regulation clearly appears from the 
comparison between these two curves. 

The rate of variation is 0,5% per minute. 
Fig. 1.43· gives the pressure transient for a very slow power 
variation which can be considered as a sequence of steady states; 
comparing this curve with the one of Fig. 1.4l., it can be seen 
that the pressure fluectuations are significantly reduced. 
The variation of Τ for the same case is given in Fig. 1.44.; 

av 
it shows that the penalty in variation of the average temperature 
is quite acceptable. 

A detailed investigation is given in Fig. 1.45· 
and 1.46. In these figures, the recorded variables are expressed 
as function of power and not of time, in order to facilitate 
comparison. 

Curve 1 gives the evolution for R =0 and a 
rate of change of power of 5% per minute; in curve 2, R =0,5 
with the same rate of change; in curve 3, R~=0,5 a n d power 
varies of 10% per minute. Fig. 1.45· gives the steam pressure; 
Fig. 1.46. gives the average temperature of organic, the organic 
temperature at the primary inlet, the superheating temperature. 



48 

do not undergo significant variation. It will be noted that, 
in the case of a step change of 50 pem, the power reaches 110% 
in 14 sec, which is about the transport delay of coolant from 
the reactor outlet to the boiler inlet· 

2.1.9. Scram 

The scram is simulated by the instantaneous 
insertion of a negative reactivity in the neighborhood of 
8,000 pem; the neutron power then decreases from 100% to a 
level equal to 5%» which represents the effect of photo neutrons 
(see Figs. 1.62 to 1.65)5 in the same time, in order to obtain 
equality between the produced power and the extracted power, the 
signal which has ordered the insertion of the scramming rods 
closes the steam throttle of the turbine inlet, so that the 
product PV = VREQ . A H (VREQ: steam flow, AH enthalpy span) 
follows the variation of the supplied power; the boiler being 
at a fixed level, the water flow at the economizer input follows 
the variation of VREQ, then, it decreases abruptly while the 
boiler, because of the transport delay of the coolant from 
reactor inlet and heat exchanger, receives always hot liquid 
corresponding to the 100% power level ; these two facts explain 
both the abrupt rise of the average coolant temperature on the 
heat exchanger side and of the steam temperature, then of the 
steam pressure. After 12 sec, the cold coolant front comes 
to the heat exchanger: all the heat exchanger temperatures 
decrease, likewise the pressure; finally, after some oscillations, 
all the variables go to their steady state, which corresponds to 
a power level and a water flow reduced to 5% and to a water 
input temperature which has remained unchanged (190°C). 

In order to reduce the pressure overshoot, 
it is necessary to make the decrease of the water flow smaller, 
i.e. to delay the closing of the steam throttle. Figs. 1.66. 
to 1.68. show this effect: the closing throttle is affected 
with inertia, the time constant of this inertia being variable, 
20 and 30 sec; it will be noted that the steady state is 
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2.1.8. Control loss and recovery 

The following case of control loss has been 
studied: 

The reactor stabilized at the nominal power 
loses suddenly its control (the control rod 
is blocked) and, at the same time, is 
subjected to a step change in reactivity of 
10 or 50 pem. 

The control system recovers the reactor when 
its power reaches 130%. 

Figs. I.58., I.59., 1.60. and I.61 show the 
variation in the time of the neutron power, average coolant 
temperature on the reactor side, average cladding and fuel 
temperatures. 

The temperature variations are larger in 
the case of a step change of 10 pem aS, the integrate power being 
larger, the energy exchanges are more important. 

The event of control loss with simultaneous 
insertion of a step change in reactivity of 50 pem is highly 
unlikely; it presumes indeed two accidents in the same time: 

the rupture of the control system; 

the fall in the channel of a bundle during 
the fuel handling (fuel handling and coolant 
flow being in the same direction). 

A more realistic event would be to consider 
a control loss simultaneously with the introduction of a bundle 
at a normal velocity (10 cm/sec), which corresponds to a step 
change in reactivity of 50 pem in 25 sec. in the worse case. 

During these control losses and recoveries, 
the variables on the boiler side and the input reactor temperature 
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b) Regulation program 2: constant pressure 
Changes in power from 100 to 75% 

The rate of variation is 5% per minute. In 
Figs. 1.47·, 1.48., 1.49* and I.50 are reported the variations 
of the characteristic parameters g 

Changes in power from 100 to 25% 

The rate of variation is 5% per minute. 
Fig. I.51. and 1.52. give the T and pressure transient with 

av 
a parametric variation of R » It can be seen that, because of 
the long time delays, gains of R > 0,5 lead to excessive over-
shots, thus R »0,5 has been retained as optimum. This has been 
verified by more exchaustive computation with fastest transients. 
All these curves are not reported for the sake of brevity. 

c) Other programs 

It has been verified that many alternatives, 
all stable, are possible; in particular, the pressure term 
can be introduced into other regulation programs, and computer 
investigation has shown its usefulness. The following table 
gives the maximum amplitude and gradients of the characteristic 
variables on the reactor side and on the heat exchanger side for 
the three following regulation programs: 

the constant-average temperature program; 
the constant-steam pressure program; 
an optimized program for the conditions of 
the turbine inlet (for which the variations 
of the steam temperature at the turbine 
inlet are smallest; the turbine efficiency 
is a maximum; the steam moisture at the 
turbine outlet has the lowest possible 
value. 

The steady state of this program is given 
with accuracy in Figs. 1.53», 1·54. and 1.55, where are also 
reported the corresponding variables of the two previous programs. 
The variation of some variables in transient state is given in 
Figs. I.56. and 1.57· 
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reached much slowlier. The large negative gradient of the steam 
temperature is essentially due to the sudden decrease of the 
coolant temperature at the reactor outlet after the step change 
of power. It might be reduced by changing the coolant flow 
or by using a coolant by-pass, which was not possible to simulate 
in the model used. 

2.1.10. Remarks on the control system 

The validity of the control system has been 
verified by complementary experiments. 

A possible simplification of this control 
design is to set R, equal to zero (see the relations (1.43.) and 
(1.44.)), on condition that, in the error term, the neutron 
power and the average temperature are present together. The 
average temperature being an integral variable of the power, it 
will indeed be verified that are rightly present a stabilizing 
proportional term to the power and an integral term of this 
power through the medium of the mean temperature which is the 
reset term. If in the reactor occurs an overpower in respect 
to that absorbed in the heat exchanger, the average temperature 
rises, which causes the regulator to decrease the power level. 

The control system has been verified to be 
stable; the analogue computation shows however that the 
transients are a little less good (see Figs. 1.69· to 1.71)· 
Besides, a defect in the measurement device of the average 
temperature would lead to a more serious accident; indeed, 
nothing will offer Opposition to a shift of the power supplied 
by the reactor (whereas the integral term of the neutron power 
will continue to oppose in the other case)· It will also be 
noted that, for this control design, it is necessary to use a 
position servo to move the control bar, what is generally not 
the case for the proportional type of control systems (see 
Fig. 1.21.). On the other hand, taking always R, equal to zero, 
but substituting now the average temperature term by a integral 
term of the steam pressure: 
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£ « - R 
η - η PV ­ PV 

c 
PV 

fP ­ P. 
+ R­ dt 

we obtain a control design which is not able to control the 

reactor, the steam pressure being not a representative variable 

of the power. 

2.2. The stable core 

The interest of the study is to examine 

whether the stable reactor can use a simplified control syst« 

design. 

2.2.1. Main characteristics of the channel 

Bundle 

Fuel cross­section 

Coolant cross­section 

Moderator area/coolant area ratio 

Channel length 

Fuel rod radius 

Cladding wall thickness 

Finning ratio 

Thermal resistance between fuel and cladding 

Maximum integral of conductibility 

Average velocity in the central channel 

Axial form factor 

Radial form factor 

Disadvantaged thermal flux factor 

18 rods 

50 cm2 

31 cm2 

9 or 7 

400 cm 

0 ,915 cm 

0 ,915 mm 

1,75 

0 , 5 °C/w/cm2 

80 w/cm 

10 m / s e c 

0,69 

0,86 

0,91 

Characteristics of the so­called representative channel (assimilât· 
ed with the mean channel) at its nominal power 

Removed power 

Input temperature 

Output temperature 

Average cladding temperature 

Average fuel temperature 

4,0 MW 

293 »c 

365°C 

365°C 

500 °C 
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Temperature coefficients for the equilibrium core 

First case: * v = 1,07 pcm/eC 
t* - + 1,83 pcm/°C c 

Second case: o< v = - 1,5 pcm/°C 
o( · - 1 pcm/°C 

C 

Time constants of the coolant circulation unchanged 

2.2.2. Positive coolant temperature coefficient 

a) On-off system 

The simplest control system is an on-off 
control system where the position of the control rods is changed 
at a fixed velocity when the error signal exceeds a predetermined 
value (which thus defines a dead zone). The error signal is 
always formed at a neutron power-term and an average temperature-
term. 

This control design is actually able to 
control the reactor, but with a smaller accuracy and chiefly a 
rather weak safe margin in respect to the instability field· 

The parametric study of the transients 
(see Figs. 1.72. to 1.76.) gives an optimum for: 

Dead zone: +_ 1% 
Inertia time constant: from 0,5 to 1 sec. 
Velocity of the bar: 5 pcm/sec. 

A dead zone of +_ 0,25% or a bar velocity of 
15 pcm/sec. lead to the instability, whereas a lower bar velocity 
(l pcm/sec.) or a larger dead zone lead to a transient behavior 
which gives too large excursions to the thermodynamical variables 
of the heat exchanger. 
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In case of power change, the regulator follows 

the imposed program by a step curve (and not by a continous curve) 

(see Figs. 1.77« to 1.80.). 

The circuit of the dead zone must be temporized 

to prevent a too frequent sollicitation by the reactor noise 

(see Fig. 1.8l. where is reported the relay running). 

In conclusion, the discontinuous­type regulator 

presents a stable running zone, but its suitability and its safe 

margin with respect to the instability lead to dissuade its 

practical use (on this subject, refer to pages 185­193 of 

/ Ref. 1 / . 

b) Proportional­type system, but with error 

signal related to a thermalmeasurement of the 

power 

The error signal is thus 

e= ­ R. 
(τ -T. ) -
out in 

ΔΤ 

ΔΤ 

PV ­

PV 
o 

PV 
o 

τ .,+τ. 

out in 

­ R, 

­ Τ 
AVo 

AV0 

where A T is the enthalpy span along the channel in steady state, 

and T. and Τ ^ are the input and output temperatures of the 
in out f f 

reactor. 

This relation can be developed as follows: 

­ Í = κ< τ χ +
 K
o T. ­ Ref 1 w

 1 out 2 in 

where Κ , K are numerical constants and Ref. 1 a reference which 
1 « 

depends upon R , R_, PV, PV and the eventual laws of variation 
\ ¿t o 

which would be affected to T 
av 

This control design is stable only for very 

weak gain values (see Figs. 1.82. and 1.83·). On the other hand, 

all parameters remain very critical with respect to the 
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instability, which would cause its realization to be difficult 
in practical conditions. 

The optimum parameters are: 

Rl = R2 » 1 

R = 1.10~3 

R, = 0.2.10~3 

c) Conclusions 

It is practically necessary,in this case, to 
use the same control design as in the previous studied unstable 
case. In these conditions, the transient behavior is practically 
identical with the unstable case; the optimum values of the 
calculated parameters for the unstable case remain valid. 
However, the stable case presents a behavior highly favorable in 
the event of control-loss. It must also be noted that the reactor, 
though being intrinsically stable according to the usual definition, 
is unstable when attached to the heat exchanger because of the 
return of hotter coolant flow due to a perturbation (then a 
positive reactivity is sufficient to cause instability of the 
overall loop). This effect appears well in Fig. I.85.: after 
about 40 sec, which is the whole coolant transport delay, thé 
temperature rises more rapidly. A mean to evacuate the excess 
of energy in order to stabilize the reactor is a steam discharge 
into the atmosphere (see Figs. 1.84. to 1.88.); another solution 
would be to increase the secondary flow. 

The stable reactor also allows a more important 
safe margin with respect to the zone where it is not possible to 
control the reactor, as it can be seen on Fig. 1.28. 
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2.2.3» Negative coolant temperature coefficient 

a) On-off control system 

The on-off control design with error signal 
related to the neutron power and the average temperature runs 
with a greater safe margin than in the case 2.2.2.a). The 
optimum parameters are here (see Fig. 1.89·): 

Dead zone: +_ 1% 
Inertia time constant: from 0,5 to 1 sec. 
Velocity of the bar: 10 pcm/sec. 

The system is unstable for a velocity of 
30 pcm/sec. and a dead zone of +_ 0,25%. 

b) On-off control system but with error signal 
related to the thermal measurement of the power 

This control design runs (wrong) only for 
very low velocities; its practical use seems to be rejected 
because its parameters are very critical (see Figs. 1.90. to 
1.92.). 

c) Proportional-type control design but with 
error signal related to the thermal measurement 
of the power 

This control design runs with a superior 
safe margin than in the case 2.2.2.b) (see Fig. 1.93«)« The 
optimum parameters are: 

R. 
1 

B 5 
R 4 

--

S 

Rn 2 
2 , 5 
0 , 5 

= 

• 
• 

1 
10' 
10' 

-3 
-3 

The gain values are larger than in the previous 
case· 
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d) Conclusions 

Here, the reactor presents a more intrinsic 
stability than in the previous case (the two temperature 
coefficients are negative), which allows to consider the use of 
regulators described in 2.2.3.a) and 2.2.3.c), also knowing that 
lower operating velocities must be envisaged. On the other 
hand, the case 2.2.3«b) is to reject. 

However, the control design described in 
1.4. remains the one which gives the better performances in 
transient and the more important safe margin for a variation of 
the parameters towards the field of unstable gains. 

The performances, in the event of control-
loss, are evidently more favorable than in the previous case. 
It will however be noted that, because of the negative coolant 
temperature coefficient, the steam discharge to a pre-fixed 
value causes a new steady state of the neutron power to set up 
at a superior level than the nominal one (Fig. 1.94.). Indeed, 
without steam discharge after the transient, the power would find 
again its initial value of 100% (PV = 100% = VREQ . AH).. 

2.3» General remarks on the regulator designs 

In the regulator design as described in 1.4., 
the error term is independent of the transfer function of the 
control mechanism. Thus, the operations depending on time 
(integration, derivation) are effected separately on certain 
variables composing the error signal and not on others. The 
possible variants of the regulator are all described by the 
general following diagram: 

measured 
variables 
references 
(programs o: 
power level 
changes 

Summation 
Comparison 
Amplification 

unique^ 
error 
signal 

transfer 
function 
in S 
(derivations, 
integrations, 
poles, etc) 
no-linearities 

Control 
reactivity 
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This gives the following advantages: 

- simpler design; 

- possibility to fit easily the regulator with 
different programs of power level changes, 
fixing thus various laws of variation of the 
temperatures, steam pressure, etc; 

- reduction of the effets due to the cut of 
one input in certain limits. 

It will still be noted that the particular 
formulation used in 1.4. allows still some freedom of choice in 
the technological realization; as it has been seen, the regulator 
can be realized (see Fig. 1.21.): 

by a proportional-type amplifier, a forwards-
phase compensation network (derivative), 
and a rate servo (i.e. with tachometer feed­
back) , excluding every integrative network 
in the electronic part; 
or by a proportional and integral-type circuit 
connected to a position servo (i.e. with 
potentio-meter feedback). 

For the regulator described in 2.1.10., a 
position servo is necessary. 
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The following table summarized the conclusions 
of the studies in the different cases: 

Unstable case 

= - 0.45 u 
= + 5«6 

Stable case 
1 
- 1.07 u 

c 

Stable cas« 
2 
- 1«5 

+ 1.83 
u 
o - 1 

Power coefficient* 
pcm/% + 0,55 - 2,2 - 4,3 

l) Proportional-type 
regulator, neutron 
power signal and 
average temperature 
signal (pressure 
term in option) 

yes yes yes 

2) Proportional-type 
regulator, only 
temperature signal no insufficient 

performances yes 

3) On-off-type 
regulator, neutron 
power and 
temperature signals 

no insufficient 
performances yes 

4) On-off-type 
regulator, 
only temperature 
signal 

no no insuff. 
perform. 

5) Proportional-type 
regulator, pressure 
and/or integral 
pressure signals 

no no no 

Examining this table leads to envisage for 
the stable case 2 a regulator with the advantages of designs 1 
and 2. 

* Calculated from analytic relations 
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The configuration is: 

- proportional-type servo; 
- neutron power signal; 
- thermal power signal ; 
- average temperature signal ; 

the reactor being able to be controlled in case of lack, by accident, 
of one of the error signal components. 

The error signal is thus defined: 

(T -T ) - AT out* in „ 
fc= _ R <>"* in 2. - R O — 2 TAV0 1 ΔΤ 2 ο χ AV0 

- K 1-1^°.+ (Κ + R ) W - PVo 
η 1 PWo 

where AT , Τ . η are the enthalpy span along the channel, the 
O A»o O 

average temperature and the neutron power in steady state, T. 
and Τ the input and output temperatures of the reactor, out 

This expression can be developed as follows: 

-fc= (+ k Τ ^ + kn T. - Ref l) + (k„ η - Ref2) 1 out 2 in 3 

where k , k , k are numerical coefficients and Ref 1 and Ref 2 1 »s j 
are references depending on R , R , K, PV and PW0, and on the 

1 2 
eventual laws of variation which would be affected to T . 

By doing so, it can be verified on the 
analogue computer that, if one of the two terms between brackets 
is removed, the regulator is always able to control the reactor 
(Figs. 1.95· to 1.98.). 

The analogue investigation gives the following 
optimum parameters: 
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R1 = 1 
R2 » 1 
R4 = 0.5 10 
R = 2.5 10 
K = 0.5 

-3 
-3 

- servo-mechanism inertia time constant 0.5 ··· 1 sec. 
- velocity limit of the control bars 15 pcm/sec. 
- delay in the measure of the temperatures 4 sec. 

Fig. 1.95· gives the behavior of such a 
regulator for a step change in reactivity of 50 pem in the case 
of a normal running, and in the other cases of running with one 
of the two measurement circuits cut. 

Figs. I.96. to I.98. give the behavior and 
the operating of power change if one of the two measurement 
circuits is cut during the running. 

The control design is the following: 

n 

Ref, 

in 

out 

Ref. 

regulation 
program 

power 
demand 

compaz— 
ison 

1' >. 

compar­
ison 

a \t 
*— R, 

:£ fs 

secondary of 
the boiler 

limits 
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III. SECOND PART 

1. The mathematical model 

1.1. Introduction 

In this second part, the model of reactor 
simulation has been taken again. However, as the representation 
of the whole plant appeared too heavy and led to minimize the 
number of operational amplifiers involved, all the groups of 
delayed neutrons have been lumped into a single group. This 
simple approximation is sufficient. Only one loop has been 
represented. It has been necessary to simulate the primary 
hydraulics because of the heat-exchanger by-pass and the 
secondary hydraulics because the pressure regulation by the 
water flow is not instantaneous; it will be recalled that, 
for a Benson heat exchanger in contrast with the drum boiler, 
the primary temperature and the steam pressure are not controlled 
independently because of the fitting of the economizer and boiler 
surfaces according to the power level. 

The used Benson model is given afterwards; 
its original formulation has involved the reduction of 
differential equations to partial derivatives and variable limits 
into a system of ordinary time derivatives. 

Only the main characteristics of the general 
control and regulating system defined by the industrial group 
will be reported. 

2. Hydraulics of the loops 

1.2.1. Primary loop 

Fig. 2.1. gives a schematic drawing of the 
hydraulic loop; the power station of the prototype is composed 
of four identical loops, of which only one is represented· 
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Every loop includes a by­pass, the primary of 

the Benson heat exchanger and the primary of the reheater. 

The location of the pump circulation and the regulation values 

must be noted. The numbers of the loops reported in Fig. 2.1. 

correspond to the indexes of the equations expressing that the 

sum of the pressure losses is equal to zero in every loop: 

(a.i.)y4 £¿+y^ ^ M ^ 4s­ **­* **-*y*-*y* 
^­0A i dt L^k dt í-^ki dt * o o 1 1 3 3 

(,.,.)5-Ä ¿ M f 4f*Zf fef 4r^-k '2-VÎ-
Ι— Α. dt C A . dt ¿»Α. dt *­*A. dt o o 1 1 

(..,.)£& fe|l jfeA fel
1
 fe»* F̂ ­kaF»­k,F» 

¿­A^ dt ¿-xki dt ¿»A dt A­Aj dt * o o 1 1 2 2 5 5 

2 2 
2 2 4 4 

o i ~ T"i "" TTi "· T"i 

where F is the flow in kg/sec 

Δρ is the heat pump pressure in kg/m2 

> ­r— is the sum of the ratios between the length and 
i i the cross­area of the pipe sections into which 

the circuits of Fig. (2.1.) can be divided 

2 
k.F are the pressure losses attached to these pipe 
i i 

sections 

The system (2.1.), (2.2.), (2.3.) must be 

completed by the equations of flow conservation: 

(2.4.) F = F„ + 3.F * 

o 1 1 

(2­5.)
 F

2 "
 F
l "

 F
3 

(2.6.)
 F

5 =
 F
2 *

 F
4 

where F is the flow of the other not represented loops, running 

in parallel. 

In order to introduce the system (2.1.) to 

(2.6.) on the computer, it is necessary to write it in a 

transformed form which does not contain derivatives in the second 
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part of the equation. Therefore, auxiliary variables will be 

defined, representing in fact the inertia strengths along the 

three loops: 

( 2 . 7 . ) ν » « ¿ F ♦ <*F +<*,F, 
1 o O 1 1 i i 

( 2 . 8 . ) V0 = o< F + oCF„ + oOr + << F. 
2 o o 1 1 2 2 4 4 

( 2 . 9 . ) V3 =oCoF0 + o<1F1 + o ^ +o< 5 F 4 

where «»< . = / ­τ­
ι A± 

Substituting gives: 

d V
l 2 2 2 

( 2 . 1 0 . ) — i = Δ ­ k F* ­ k F* ­ k , F , 
dt ρ o o 1 1 3 3 

( 2 . 1 1 . ) —¿ = A ­ k F** ­ k F? ­ k.F
2
, ­ k , F

2 

dt " p o o 1 1 2 2 4 4 

( 2 . 1 2 . ) —­¿ = Δ ­ k F
2
 ­ k , F

2
 ­ k 0 F

2
 ­ k t F ? 

dt " p o o 1 1 2 2 5 5 

( 2 . 1 3 . ) 

( 2 . 1 5 . ) 

f *3°<4V3 r / 0 ( a 0 ( 4 + *2«5 + 0 ( 4 ^ 5 K y ^ ¿ ^ 2 
l ~ ( o < 4

+
û ( 5 ) ( o < 1 o ( 3 + ( 5 < 1 o < 2 + o < 2 o ( 3 ) + c < 4 o < 5 ( o ( ^ + o ( 3 ) 

( * ! + < * ) F ­ V 
( 2 . 1 4 . ) F 2 « — î ¿ _ 1 i 

F V
0

^ * ! *
0

^ ! ~ V * 3
 V

l ­
 V

2 ­
 V

3 
5

 =
 * 4

 +
0<5 

( 2 . I 6 . ) F , = F . ­ F_ 
i 1 2 

( 2 . 1 7 . ) F 4 = F 2 ­ F 5 

The Eqs. (2.10.) to (2.17·) are those actually 

represented on the computer, and analogue investigation has shown 

that the corresponding computation circuits are stable and give 
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about the same results as those obtained in numerically intégrât· 

ing the equations. 

proportional to the squares of the flows, the k coefficients 

The pressure losses in the pipes being 

e squares of the flows 

are constants (in newtons/m2)/(kg/sec.). 

For the valves, the coefficients are variable 

and of the form: 

k = 
ÄTyTZ 

where c is a constant 

A is a characteristic function of the valve 

y is the opening in percentage 

Fig. 2.2. gives the A functions used in 

computation. 

If the operating range of the valve is limited, 

for example from 20% to 100%, Fig. 2.2. can be approximated by 

the following expression: 

., χ 2 4 

A(y) = a1 + a2 y + a3 y 

which allows to use the parabolic function generators of the 

—2 
analogue computer. (For Fig. 2.2., a = 4.36x10 , 

­1 ­2 
a = 2.961x10 , a. = 6,54x10 ; the corresponding points are 

*· i 

reported on the figure). The pump characteristics are given in 

Fig. 2.3. 

The temperature transfer functions of the 

pipes will be considered as pure time delays using a 5th order 

Padé's approximation to realize the delay operator. 
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1.2.2. Secondary loop 

Fig. 2.4. is a schematic drawing of the secondary 

loop, where a common collector gathers the flows of the heat 

exchangers before distributing them towards the turbine. The 

feed pump is assumed to maintain the pressure independent of the 

value of the flows. For every heat exchanger, there is a 

regulation valve of the water flow. In the following, an unique 

heat exchanger will be represented, the others being assumed to be 

in the same conditions, then FD must be put equal to FD . 

«Ul lvl 

The flow entering into FD is deduced by the 

usual momentum equation: 

­ . ~ = PD ­ PD ­ (16 KD + KD +(—7—^ ) FD
2 

A dt 001 002
 v

 001 001
 A

<
Y D

l 0 1 101 

The pressures and the temperatures in the 

collector are deduced by a mass and energy balance: 

^
R 0

0 Q 2
) 

(2.19.) VCOLL. — = 3.FD202 + F D ^ ­ F D ^ 

d(R0 .ID ) ­, , 
( 2 . 2 0 . ) VCOLL. 2 ~ T 22± = 3 FD o r iJ EVSAT + CPS (TD2 ( ) 2 ­ TSAT) 

dt " 202 

+ F D
102[

E V S A T + C P S (TD
102 ­

 T S A T )
] ­

 FD
002

 IR
002 

GECO GEVA 

e AS 'Β AS 

taking 

PD 

(2.21.) ID = AIPRO + BIPRO . ( ) 
κυ
002 

(2.22.) TD 0 0 2 = ATI ­(ID ) ♦ BTP­ ( P D ^ ) + CT 
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where VCOLL is the collector volume 

PDQQQ
 i s t h e

 density of the steam in the collector 

PD is the pressure of the steam in the collector 

ID
002 ** *

n
*
 entnA

lpy
 o f t h

· ■team in the collector 

TD is the temperature of the steam in the 

collector 

FD is the flow of the steam from the collector 

to the turbine 

GECO and GEVA represent the mass for unit of length for 

the economizer and the evaporator 

Y and Y represent the heights of the economizer 

and the evaporator 

AS is the secondary cross­section of the boiler 

Expressions (2.21.) and (2.22.) are 

linearizations of the steam characteristics, the precision of 

which can be judged by looking at Figs. 1.15* and 1.20.; the 

approximation (2.21.) has also been introduced into (2.20.). The 

mass flow and temperature of the steam exiting from the heat ex ­

changer (
FD
102'

 TD
io2^

 a r e o u t
P
u t
 variables from the "Benson heat 

exchanger block";
 FD

oo2
 a n d TD

202
 c a n b e a s s U B e d

 equal to 

FD and
 T D

4 0 2
 a s

 the four loops are working in the same 

conditions. 

The flow into the turbine is calculated by: 

(2.23·) FDA/,„ » V^ Ρ0 Λ Λ Ο 

002 t 002 

where V is proportional to the power demand; it is also 

possible to calculate the power delivered to the turbine by: 

(2.24.) V , ­ ( ΔΗ w +ΔΗ w A) 
el ech resurch/ 

FD 1 

where AH and AH . are the enthalpy spans on the 
ech resurch 

secondary heat exchangers and reheaters 

A 
ι 

the part of flow entering into the 

reheater 

the efficiency of the turbo­alternator 

group 
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1.3» Heat transfer equations in the Benson 

1.3.1» Location of the phase-change zones 

The primary and secondary fluids flow in opposite 
directions along a wall; the primary fluid (organic coolant) 
remains always liquid along its path, whereas the secondary 
fluid is changed from liquid state to wet steam and dry steam; 
the secondary circuit having a continuous structure, it results 
that the limits between the different thermodynamical states are 
variable in position. In the boiling zone, the same velocity 
will be assumed to the two phases· 

The height of the economizer, of the evaporator 
and of the superheater is calculated from overall balances. 

For any cross-element of the heat exchanger, the 
mass and energy balances give both for the primary and for the 
secondary: 

(2.25.) i-
2 

f H dy F. H. in in F . H + out out 
,«ƒ< 

t* (T -T)dy Ρ 

(2 ·26·) « f ƒ Α dy = p, F. - f F 
/ I in in ' out out 

where A is the cross-section for flow of fluid 
Ρ is the density (kg/m3) 
Η is the fluid enthalpy (kcal/kg) 
F is a mass flow (kg/sec.) 
o¿ is the heat transfer coefficient per unit length 

(kcal/
e
C/m) 

dy is the height element 

y is the height coordinate 

Τ is the temperature 

The indexes "in*
1
 and "out

11
 refer to the entering 

and leaving fluid, and "p" to the wall. 
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Applying the relations (2.25.) and (2.26.) to the 

entire height of the economizer, the limit conditions are: 

- the flow of input; 

- the enthalpy of input ; 

- the enthalpy of saturation deduced from the 

pressure. 

Assuming that the enthalpy distribution is changed 

along the heat exchanger according to a known law, Eqs. (2.25·) 

and (2.26.) allow to calculate the height of the economizer (y ) 

and the exit flow (F ). The following hypothesis must be 

introduced in order to resolve these equations for the economizer: 

- the density is constant; 

- the enthalpy is varied linearly according to the 

temperature: 

H = H + C Τ 
ο Ρ 

where C is the specific heat 
Ρ 

- the temperature distribution is linear: 

Τ = Τ, + (Τ A - T. )
 y
— 

in sat in y 
e 

where Τ is the saturation temperature, 
sat 

The whole height of the economizer will be divided 

into NE cells, in order to quantify it according to the y axis. 

In these conditions, applying (2.25·) and (2.26.) to the secondary 

and on the whole economizer gives: 

(2.27.) ¿AC %? (y .T) = C F. T. -C F .Τ . + * Υ" (Τ . , 
r ρ dt e ρ in in ρ out sat *-, p.-T.).y / 

1 i i e . 

d 
(2.28.) PA ^r y = (F. - F . ) 

f dt e in out 

Then, after separating the variables and taking 
T i n + T s a t 

into account that Τ = *¿ : 
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T. T .dy C y dT. dT x 
ρ e / in sat χ 

NE 
+ C F. Τ, ­ C F AT ^ +«< 

ρ in in ρ out out y (τ 
i- p

i 

­ Τ ) ν / 
i'

 y
e'NE 

(2.30.) Fout = F. ­ fk 
dy¿ 

dt 

(2.31.) Τ, = T. + (Τ . ­ T. )
 y
e . i 

i m sat m — 

where T. is the average temperature of the cell indexed i. It 

must be noted that, if the pressure is constant, or is little 

HT 

varied, the term in .?** must be neglected in (2.29·). 

Likewise, in most cases the variations of the input 
d Ti n 

temperature will be very slow and the term in ■ ■ — will also be "ΈΓ 
neglected. 

In the same manner, the evaporator will be quantified 
in NB sections, where the hypothesis are: 

- linear distribution of the enthalpy 

H = ELSAT + (EVSAT-ELSAT) ^ ~ 
y a 

Τ = TSAT 

/ « / ( H ) = -

ν ( V - v') Í ­
B 

J
B

 w
 o 

/■ k f: ι-

dy 

w h e r e 

■ " f r 

,, _ i. 
^ f" 

specific volume of the 

saturated liquid 

specific volume of the 

saturated steam 

H = (ELSAT+EVSAT)/2 

Using Eqs. (2.25·) and (2.26.) still valid in the 

case of the evaporator, it results: 
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— "
J
B · ¿^ 

(2.32.) A#H . ­ ~ = Ρ F, ELSAT ­ ·" F ^EVSAT + > ¿χ. (Τ ­Τ .) 
Λ dt Λ in ­f out *τ— ^i p. sat 

.
 d y

B 
(2.33·) F = F. ­ ¿A ­rr

2 

out in ­4 dt 

dy , NB vB 

For these equations, the limit conditions are given 

by the output values of the economizer equations. 

By integrating Eqs. (2.29.) and (2.33·), it is possible 

to determinate the heights of the economizer and evaporator in 

transient state; of course, the height of the superheater is 

deduced by difference. 

I.3.2. Calculation of the temperature distributions 

In order to obtain a rather accurate representation 

of the heat exchanger transient behavior, every zone previously 

determined has been subdivided into sections. This is not a 

quantification of the space variable, the zones being variable in 

the time, but it is a subdivision relative to these zones. This 

will define sections of finite differences with variable dimensions 

and locations. 

Relations (2.25·) and (2.26.) remain valid for each 

of these sections. If the quantification is small enough (which 

must be determined by numerical computation), the output temperature 

T. of the section i can be assimilated to its average temperature. 

For the same reason, the density and the specific heat C can be 

considered as constant in the interior of a section, which allows 

to take them outside the derivation operator. 

The relations (2.25.) and (2.26.) become, for an 

indexed section i: 

ατ 
(2.34.) AyC £A — i = C F. (T. .­Τ.) + ^ . Δ Τ .Ay 

ρ τ dt p i i­1 i 

(2.35.) Tt =F._ 1 ­ kf% 

where Δ Τ is the difference in temperature between the fluid and the 

wall and where A y is the height of the section. 
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Eqs. (2.34.) and (2.35.) are used to represent the 

primary of the heat exchanger, in the same way as the secondary 

of the superheater. These equations are also available to 

represent the wall, when οζ ΔΤ includes the algrebraic sum of the 

exchanged heat amounts on both sides of the wall. 

As the location of the sections is variable with 

respect to the heat exchanger, it is possible to take this 

movement into account by use of a fictive flow of the wall 

represented exactly as the real flows. In this case, Eq. (2.25.) 

will be completely defined if a fictive flow equal to zero at 

one of the ends of the heat exchanger is given as limit condition. 

• The equation of the wall will be the following: 

dT. 

y C ·Α - ~ = F. . C f (T. -T.) +o< (T -T) . . y - * (T-T ). . y 
ρ 1 dt î-l ρ I î-l ι p p i s s i 

F. = F. . ­ Af4í 
1 î-l ' dt 

In the following, we will find the complete set of 

the equations, as applied to the computer: 

1.3 ·3· Set of the equations 

a) Calculation of the heights 

ECO) -i ROSE.AS.CSE.(TSAT-TSIN) ^rf- = 
2 at 

NE 

CSE.FSIN.(TSAT-TSIN) -> . ALFAE(TP(i )-TS(i ) ) — 

* T — 1 NE 

EVA) -i ROSB.AS.(EVSAT-ELSAT) ~ ^ = 
2 at 

NE+NB 

FSE. (EVS AT-ELSAT) - ? . ALFAB(i) (TP( i)-TSAT) rjr· 

NÎ+1
 X N B 

SUP) YS = LTPT - YE - YB 
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b) C a l c u l a t i o n o f t h e f l o w s 

S e c o n d a r y 

ECO) FSE » FSIN ­ ROSE.AS. 
dYE 

d t 

EVA) FSB = FSE ­ R0SB2.AS. 
dYB 

d t 

SUP) F S ( i ) = F S ( i ­ l ) ­
ROSS.AS dYS 

NS d t 

i = NE+NB+1,NE+NB+NS 

F S ( o ) = FSB 

Wal l 

ECO) F P ( i ) = F P ( i + l ) ­
ROP­AP dYE 

NE ' d t 
i = 1 , NE 

EVA) F P ( i ) = F P ( i + l ) ­ — j — . ^ ? i = ΝΕ+Ι,ΝΕ+ΝΒ 

No a t 

SUP) F P ( i ) = F P ( i + l ) ­
 R

~ ~ . ^ r r 1 " NE+NB+1,NE+NB+NS 

NS d t 

FP(NE+NB+NS+1) = o 

Pr imary 

ECO) F O L ( i ) = FOLU+1) ­
ROOL.AOL 

NE 

dYE 

dt 
i = Ι ,ΝΕ 

EVA) F O L ( i ) = F O L ( i + l ) ­
ROOL.AOL dYB 

NB dt 
i = NE+1,NE+NB 

SUP) F O L ( i ) = F O L ( i + l ) ­
 R 0 0 L

*
A 0 L

 . ÉÏ1 i = NE+NB+1,NE+NB+NS 

NS ä t 

FOL(NE+NB+NS+l) = FOLIN 
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c ) C a l c u l a t i o n o f the temperatures 

Primary 

ECO) COL.ROOL.AOL. d T ° L ( i ) 

at 

= COL.FOL(i+l) . (TOL(i+l) -TOL(i)) /YE+ALFP.(TOL(i)-TP(i) ) 

i = 1 , NE 

EVA) COL.ROOL.AOL. ¿TOJiU) « 

dt 

= COL.FOL(i+1).(TOL(i+1)-TOL(i))/YB+ALFP.(TOL(i)-TP(i)) 

i = NE+1, NE+NB 

SUP) COL.ROOL.AOL. ¿ISkiA' = 
at 

= COL.FOL(i+l).(TOL(i+l)-TOL(i))/YS+ALFP(TOL(i)-TP(i)) 

i = NE+NB+1, NE+NB+NS 

TOL(NE+NB+NS+l) = TOLIN 

Vall 

ECO) CP.AP.ROP. -ËJJÊii* = 

ät 

= CP.FP(i+l).(TP(i+l)-TP(i))/YE+ALFP(TOL(i)-TP(i)) -

- ALFSE.(TP(i)-TS(i)) 

i = 1, NE 
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EVA) CP.AP.ROP. SSSWm 

ät 

C P . F P ( i + l ) . ( T P ( i + l ) ­ T P ( i ) ) / Y B ( + ALFP(TOL(i))­TP(i)) ­

­ A L F S B ( i ) ( T P ( i ) ­ T S A T ) 

i . NE+1, NE+NB 

SUP) CP.AP.ROP.
 a

*
P ( i )

 = 

dt 

= C P . F P ( i + l ) . ( T P ( i + l ) ­ T P ( i ) ) / Y S + A L F P . ( T O L ( i ) ­ T P ( i ) ) ­

­ ALFSS(TP(i ) ­TS( i ) ) 

i = NE+NB+1, NE+NB+NS+1 

Secondary 

2.1­1 
ECO) TS(i) = TSIN ♦ (TSAT­TSIN) 

EVA ) TSI = TSAT 

2. NE 

SUP) CSS.AS.ROSS.
 d
^f

( i
 = CSS.FS(i­l).(TS(i)­TS(i­l))/YS 

dt 

+ ALFSS.(TP(i)­TS(i)) 
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AOL, AL, AP 

COL, CP, VSE, CSS 

ROOL, ROP, ROSE, 
ROSS 

ROSB 

ROSB1 = 

ROSB2 = 
ROSB = 
HSB 

ELSAT, EVSAT 

TSAT 
YE, YB, YS 

NE, NB, NS 

LTOT 

ALFAE, ALFAB(i), 
ALFAS 

ALFP 

FSIN, FOLIN 

FSE, FSB, FS(i) 

FOL(i) 
FP(i) 
TSIN, TOLIN 

TOL(i), TP(i), 
TS(i) 

Area of heat transfer surface of the primary, 
of the wall and of the secondary,(m2). 
Specific heat of the primary, of the wall and 
of the secondary on economizer and superheater 
sides (kcal/kg °C). 
Average densities of the primary, of the wall 
and of the secondary on economizer and super­
heater sides (kg/m3)· 
Density of the secondary on the evaporator 
side (kg/m3)· 

EVSAT+ELSAT / : 
ROSB.HSB dx 

ROSB dx = 
l/( ν·+( v"-v').x) kg/m3 
Enthalpy of the evaporator on secondary side 
(kcal/kg) = ELSA+(EVSAT-ELSAT)x 
Specific heats of the liquid and of the 
saturated steam (kcal/kg) 
Specific volumes of the liquid and of the 
saturated steam (m3/kg) 
Temperature of saturation (°C) 
Heights of the economizer,evaporator and 
superheater (m) 
Number of sections for the quantification of 
the economizer, of the evaporator and of the 
superheater 
Total height of the heat exchanger (m) 
= YE + YB + YS 
Heat transfer coefficient between wall and 
secondary for the economizer, the evaporator 
and the superheater (kcal/sec m2 °C) 
Heat transfer coefficient between wall and 
primary (kcal/sec m2 °C) 
Flows to the secondary and primary inlets 
(kg/sec) 
Exit flows of the economizer, of the evaporator 
and of the superheater (kg/sec) 
Organic flow (kg/sec) 
Fictive flow of the wall (kg/sec) 
Temperature at the secondary and primary inlets 
(°C) 
Organic, wall and secondary temperatures (°C) 
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1.4. The control and regulating system 

Ve will restrict ourselves to give the general 
principles. 

The control and regulating scheme is already given 
in Fig. 2.3·, where the reheater has been removed by simplification. 
The general regulation scheme is reproduced in Fig. 7«, where, by 
simplification, the reheater has been omitted. 

The regulation must hold to the set values: 

- the neutron power 
- the power to the turbine 
- the reactor output temperature 
- the steam output temperature 
- the steam pressure 
- the coolant flow in the reactor 

Moreover, the control system must allow the power 
level changes from the low powers (10 ... 25%) to the nominal power 
of the power station. The power station must be stable at any 
power level. 

The mathematical simulation of the components of the 
control system presents no difficulties and will not oe retaken here. 

The representation of the effect of the valves on 
the hydraulic loop has been given in 1.2. The transient response 
of a valve is the same as the one due to a one pole transfer 
function, but it is necessary to represent also on the computer the 
velocity limit of their operating mechanism. 

The control rods are made of neutron-absorptive 
gas; with respect to mechanical control rods, their inertia is 
very weak. 

In the regulator, proportional and integral terms 
are necessary; the analogue computation has showed that the 
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addition of a derivative term does not improve the control-rod 
performances. 

2. ANALOGUE COMPUTATION RESULTS 

2.1. Transient réponses of the primary loop 

Because of the non-linearities of the primary loop, 
it is necessary to check the static characteristics before design­
ing a regulating system. 

Fig. (2.6.) gives the flow variations as function 
jer 1 

pass-valve opening. 
of heat exchanger throttle opening Y , for a constant value of by-

2 

Fig. (2.7·) shows the range of Y variation (heat 
exchanger valve) when it is necessary to maintain the flow F 
constant (the indexes refer to Fig. 2.1.). The different values of 
F are reported as parameters. This figure shows that, for the 
large flows (F .̂ l400 kg/sec), the efficiency of the regulation 
becomes unreliable because of the neighborhood of the limits for 
valves motion travel stoppages, and that it is not possible for 
the flow regulation (which maintains constant F ) to run with the 
by-pass valve too near to its stoppage. It will also be noted 
that the effect of the regulation valve is the same as the one due 
to a variable gain in the regulation loop. 

According to the present data (June, 1968) of the 
250-MVe prototype, it is necessary to set up a flow F (primary 
heat exchangers and reheaters) equal to 1340 kg/sec. for a 
temperature span of about 50°C. In these conditions, in order to 
obtain a good running of the F regulation, it is necessary to 
hold the set value of F at least at 1400 kg/sec. (which has 
been confirmed on the computer). Then, in Fig. (2.7.), it must 
be shown that are necessary a heat exchanger valve opening of 
about 90% and a by-pass valve opening of about 45%. 
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Fig. (2.8.) shows that F must be modulated (i.e. 
2 

that the regulation of the temperature or of the steam pressure 
can operate) for different values of F , maintained constant by 
a regulation. This curve shows clearly that the regulations 
cannot run with a too weak value of F , which justifies afterwar« 
the value of 1400 kg/sec. obtained from the prototype data. 

Fig. (2.9.) shows that it is possible to modulate 
the reheater flow F in the same conditions. 

5 

All the previous considerations show clearly that 
the choic e of the set points of the regulating system is not 
indifferent, but it is practically imposed by the static 
characteristics of the hydraulic loop. 

In the following are summarized the set points 
determined on the computer: 

Reactor flow (for one loop): F = 1425 kg/sec. 
By-pass flow: : F = 85 kg/sec. 
Primary heat exchangers flow: F * 1340 kg/sec. 

2 
Benson flow : F, = II50 kg/sec. 
Reheaters flow: : F = 190 kg/sec. 

The pressure loss coefficients being imposed, these 
values allow to determine the pressure which is necessary to the 
pump and the pressure losses of the loop reported in the following 
table: 

Head pressure: 21 kg/cm2 
Pressure loss in the reactor: 16.2 kg/cm2 
Pressure loss in pipes: 1.0 kg/cm2 
Pressure loss in the by-pass: 3*8 kg/cm2 
Pressure loss in the primary 
heat exchanger: 1.3 kg/cm2 
Pressure loss in the heat 
exchanger valve: 2.1 kg/cm2 
Pressure loss in the heat 
exchanger pipes: 0.4 kg/cm2 
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2.2. Stability of the secondary loop 

On the secondary hydraulic loop (see Fig. 2.4.), 
the steam flow FD is imposed by the power demand, whereas the 

2 
input water flow FD is determined by the pressure at the feed 
pump and by the position of the secondary regulation valve. 
At the equilibrium, the feed water flow must be equal to the 
steam flow, but, for a certain frequency (of about 0,5 Hz), the 
phase angle is l80° between these flows and, in these conditions, 
instabilities can arise. 

Fig. 2.10. gives a recording which shows how the 
instabilities settle. The recording is done in the following 
conditions: 

At the partial opening of the feed valve (50%), 
the pressure at the pump is 86 kg/cm2, whereas the steam 
pressure at the collector is 70 kg/cm2, which gives an overall 
pressure loss on the loop of l6 kg/cm2. There is no regulating 
system operating on the secondary. Under these conditions, the 
loop is stable, as can be shown in the figure. Then the feed 
valve opening is stepped, which involves the pressure losses in 
lhe loop to decrease. At a certain moment, the oscillation 
arises (it goes to a limit cycle) (the last right-hand part of 
the figure has an expanded scale in time, which allows to examine 
the phase relations). 

Ve conclude that, first, sufficient pressure losses 
must be introduced into the loop in order to stabilize it and, 
secondly, any designed regulating system must suppress the 
oscillations involved· 



79 

2.3« Heat exchanger behavior 

2.3.I. Accuracy of the mathematical model 

The dynamic behavior of the heat exchanger involves 
that one of the whole power station; the accuracy of the heat 
exchanger simulation on the computer is capital. Ve have seen 
that this representation is based on the quantification of the 
three zones of the heat exchanger. The question then arises: 
into how many sections must be subdivided each zone? The problem 
can only be carried out experimentally, by examining the asymptotic 
convergency of the œsults as function of the increase of the sections 
number. 

Fig. (2.11.) shows how converge the steady state 
values of temperatures and dimensions of the heat exchanger zones 
as function of the number of the sections by zone. Finally, the 
chosen subdivision is a compromise between the accuracy and the 
bounds of the computer. In this case, have been used: 

- 1 section for the economizer 
- 4 sections for the evaporator 
- 2 sections for the superheater. 

The results referring to this subdivision are 
reported to the right-hand side of Fig. (2.11.). 

2.3.2. Steady-state performances. 

As for the hydraulic behavior, it is necessary to 
take the thermal steady-state equilibriums into account, in order 
to set up the set points of the regulating system, which must 
maintain the steam characteristics (pressure, temperature) constant 
at different power levels. 

The power level is changed by varying the secondary 
flow. On the primary side, several regulating programs are 
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possible as a principle: 

a) constant input temperature and variable flow (using a by-pass); 
b) constant flow and variable input temperature (case without by-pass); 
c) variable temperature and flow (using a by-pass). 

For the case c), an infinity of solutions is possible. 
For the same power conditions, the options a), b) and c) lead to 
significative differences in the temperature distributions and then 
in the location of the heat exchanger phase changes. The search 
of a determined shape of temperature distribution will be able to 
be a criteria of choice between the solutions a), b) and c) in order 
to change the power level· 

Figs. (2.12.) to (2.17.) give the state of the heat 
exchanger in various cases, for the base data of the prototype, for 
a steam temperature of 345°C and a steam pressure of 67 kg/cm2. 

Fig. (2.12.) gives the heat exchanger subdivision in 
case a). It can be shown that, for the low power levels, the 
evaporator fills nearly all the heat exchanger, whereas the 
economizer and the superheater become very small. Thus, a little 
variation of the primary flow involves a large variation of the 
steam temperature, which must cause the regulating system to be 
instable (at 2,5% of the power, a variation of 2.8°C on the steam 
temperature involves a variation of 1 kg/sec. on the primary flow, 
which is to compare with 0.033°C for 1 kg/sec. at 100% of the 
power). This fact makes difficult the regulation at the power 
levels inferior to 70% ... 50%. 

Fig. (2.13.) gives the variation of the flow and 
of the output primary temperature for the same case a), as function 
of the power level· 

Fig. (2.14.) gives the subdivision of the heat 
exchanger for case b) (no by-pass): at the low power levels, the 
evaporator diminishes, whereas the superheater increases. Variations 
on the primary will have a less important influence with respect 
to the previous case· 



81 

Fig. (2.15.) shows the variations of the coolant 
input and output temperatures in case b). This figure shows that, 
in case of regulation without by-pass, it is not possible to hold 
the reactor output temperature constant as function of the power 
level. The set point of this temperature must vary necessarily 
according to Fig. (2.15«), which involves a decrease of about 8°C 
for a variation of the power level from 100% to 23%. It can be 
seen that, at the low power levels, the heat exchanger pinch-point 
decreases (whereas it was constant in case a)). 

Examining Figs. (2.12.) and (2.14.), it appears 
that it is possible to find an intermediate scheme (case c)) which 
allows to maintain about constant the height of the heat exchanger 
zones (Fig.(2.16.)) (and also the temperature distributions), this 
by varying the primary flow and the coolant input temperature as 
reported in Fig. (2.17·). This solution requires the use of a 
by-pass, but eliminates the defect of scheme a), which we have 
pointed out previously; it allows to find easier the conditions 
for a regulating system being stable at the low powers. 

Figs. (2.12.), (2.14.) and (2.l6.) would deserve 
a careful examination by the builder of the heat exchanger, who 
would have to indicate what configuration gives the better opera 
ing conditions at part loads· 

2.3.3« Transient responses of the heat exchanger 

The variation of the heat exchanger transient 
behavior as function of the power level determines essentially 
the performances of the regulating system (or even determines the 
possibility or not to regulate). 

Now, we have ssen in the previous chapter that the 
power can be varied by modifying either the primary flow or the 
primary input temperature, or both. As for the static cases, 
the transient behavior is very different and we will examine each 
one of these cases. It will be recalled that the output steam 
characteristics must be maintained independent of the power level· 
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The input variables of the heat exchanger are the 
temperature and the flow. The output variables which are of 
interest (because they must be regulated) are the steam output 
temperature and the steam pressure. As the steam pressure mainly 
depends on the characteristics of the secondary loop, the responses 
of the steam temperature to the input variables in step function 
will be of interest. Besides, these computations would allow 
to derive the heat exchanger transfer functions. 

Fig. (2.18·) shows the response of the steam 
temperature as a result of a step-like variation of the input 
coolant temperature at 100% of the power level. (In this attempt, 
as in the next one, are reported the responses, either for a 
positive or for a negative variation in step function). 

Figs. (2.19.) and (2.20.) give the same attempt 
for 75% and 50%, the power being varied according to case a) 
(by-pass, constant input coolant temperature). It can be shown 
that the transfer function is substantially modified in amplitude 
and phase; furthermore, the dissymetry of the responses as a 
result of the positive and negative variations in step function 
increases. Ve can conclude that the running of a control system 
according to scheme a) will be difficult, which has been actually 
pointed out on the computer. In other words, according to the 
regulation, it is not recommended to maintain the reactor output 
temperature constant when the power level of the plant is varied. 
It will be noted that this conclusion, based on transient 
considerations, strengthens the one of the previous chapter which 
was set up on static considerations* 

Fig. (2.21.) gives the response of the output 
temperature as a result of a step -like variation of the input flow. 

Figs. (2.22.) and (2.23.) give the same attempt 
at 75% and 50% of the power level, always for scheme a). The 
comparison of the three figures between themselves involves the 
same conclusions (for the response to a variation of flow in step 
function) which we had expressed for the response to a variation 
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temperature in step function: i.e., the variation of the transfer 
function is such that the regulation will be always difficult to 
stabilize at the low powers. Incidentally, the examination of the 
six last figures shows also that an approach of stability based on 
a transfer function representation (i.e. on a linearization of the 
problem) cannot give sure results· 

Figs. (2.24.) and (2.25.) give the response of the 
steam temperature as a result of a step-like variation of the 
input coolant temperature, at 75% and 50% of the power level 
and for scheme b) (constant flow, no by-pass). It is important 
to note how these curves differ from those of Figs. (2.19.) and 
(2.20.). Here, the amplitude and phase characteristics change 
little with the power level and this scheme allows immediately to 
consider a regulator being stable at any power. This regulator 
might however follow the set points as indicated in chapter 2.3*2. 
(steady-state performances). 

Fig. (2.26.) shows the response to a variation in 
step function of the flow, for scheme c), at 75%, 50% and 25% of 
the nominal power (case where the input flow and the input 
temperature are both varied in order to maintain the location of 
the phases water-steam constant in the heat exchanger secondary). 
This gain in amplitude decreases at the low powers, which would 
made stable but unefficient a regulation of the steam temperature 
by regulating the primary flow. In this case, the power station 
might be better regulated by simply holding the primary heat 
exchanger flow as function of the operating power of the plant 
(the by-pass ensuring always the regulation of the flow in the 
reactor) and regulating the steam temperature by means of the 
fixed output reactor temperature. 

2.3.4. Internal transient variations 

Independently of the study of the heat exchanger 
as a control element, the mathematical model can yield information 
on the transient behavior of the internal heat exchanger variables· 
He will not extend ourselves over this point of view, but, for 
illustrative purposes, we give the following figures; these 
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attempts are less accurate than the previous ones; indeed, they 
have been set up by taking a quantification of two sections by 
cell into account (see (Fig.2.11.)); all refer to the case of 
the nominal power. 

Fig. (2.27·) gives the variations as result of a 
positive step in input secondary temperature. 

Fig. (2.28.) gives the responses to a positive step 
in input primary organic temperature· 

Fig. (2.29.) gives the responses to a positive step 
in feed water flow. 

Fig. (2.3O.) gives the responses to a positive 
step in primary organic flow. 

2.3. Conclusinns 

In this study of the heat exchanger transient 
behavior, it has been searched to set up the basis knowledge being 
necessary to design a regulating system. As usual, in this kind 
of study, the control engineer can choose between several 
arrangements for the control devices and points of measurement 
and each one of them, well studied, involve» a suitable design. 
The study of the regulation must - above all - be founded on a 
complete investigation of the steady state operating at all power 
levels. Vithout this, it would be possible to choose criteria 
incompatible between themselves. 

The simulation also yields information which can 
be useful to the design engineer or the builder, like the 
distribution of the pressures along the hydraulic loop or the 
repartition of the water-steam phases in the heat exchanger. 

If several control designs, also suitable for the 
control engineer, are balanced, the features reported previously 
will allow to fix a choice based on technological considerations 
(thermal stresses, charges, etc...). 
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Another, more general, conclusion i s that the 
dynamic study of a power plant s imilar to the one studied here 
must res t on an accurate mathematical heat exchanger representation 
both for the heat transfers and for the hydraulic behavior. For 
the reactor , a on-point model i s s u f f i c i e n t . 
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k g / m
3
 WATER DENSITY 

koal/m
2
s*c

e
C HEAT TRANSF. COEFF. 

ALVE 

LEVA; 

PLVE: 

m 2 c a L CROSS SECTION 

m CELL LENGHT 

m CELL WETTED PERIMETER 



Fig. 1-9, 
GO-1813 

PRIMARY AND SECONDARY FLOW PATHS IN THE BOILER 

TO THE SUPER HEATER WREQ 

WREQ 



X.WOUT STEAM TO . 

THE UPPER â 

DOME 

HLVB. PLVB. LE VA.( TPABO
(3)

-TSAT ) 

HLVB. PLVB.LEVA. ( TPABO
( 2)

-TSAT) 

HLVB PLVB LEVA ( TPABO
(1 }

-TSAT ) 

BOILER L.V 

(I-X)-WOUT WATER 10 THE 

to- OOWNCOMER 

Fig.|1-K) 
GO -1815 

WOUT. IM 

OUTCOMINÔ ENERGY 

cr 

♦ 
or 

«C 

α. 

χ 

< 
(Λ 

AR-LR.-
dt 

• ( / . I M ) STORED ENERGY 

WR. ILIO ♦ WREQ. CLVE .TLVEC 

INCOMNG ENERGY 

(2) 

WR( kg/sec.) FROM THE DOWNCOMER 

WREQ (kg/sec ) FROM THE ECONOMIZER 

MASS WOUT=WR*WREO-AR.LR AL 
dt 

CONSERVATION LAWS 

ENERGY A L . L R . - £ - ( P . | M ) = WR.ILIQ+WREQ.CLVE.TLVEC
(2)

- WOUT.IM+ Q 
at ' 

Q = HLVEB . PLVEB. LEVAX TPABO
( 3

 K TPABO
(2)

 ♦ TRABO
05

- 3 .TSAT ) 

SYMBOLS 

WR = DOWNCOMER MASS FLOW RATE ( kg/secj 

WREQ = ECONOMIZER MASS FLOW RATE ( kg/sec.) 

WOUT = MASS FLOW RATE FROM THE BOILER 

ILIQ = SATURATED LIQUID HEAT CONTENT ( kcal/kg.) 

IM = RISER HEAT CONTENT (kcal/kg.) 

ƒ = RISER MEAN DENSITY ( k g / m 3 ) 

X = RISER MEAN QUALITY ( kgsteam/kg. ) 

AR = RISER CROSS SECTION m 

LR = 3.LEVA» RISER LENGHT m 

PLVB= RISER WETTED PERIMETER m 
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Fitting curve 
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UPPER DOME RgJ-14 
GO-1819 

Ρ, RO, I 

STORED MASS VdRO/dt 

STORED ENERGY V d ( R O | ) / d t 

STATE EQ. l«AUBIPRO-(P/RO) 

FROM THE RISER WC 

ILIQ 

X (WR+WREQ) 

ISAT 

JL 

- * · Τ Ο THE SUPERHEATER 

WREQ 

I 

FREE LEVEL 

TO THE DOWNCOMER 

MASS CONSERVATION LAW 

V ' - í r r ^ = X ( W R + WREQ)-WREQ - W C 
d t 

ENERGY CONSERVATION LAW 

STATE EQUATION 

ν
α (

β °
Π
 = X ( W R »WREQ) I S A T - W R E Q I - W C ■ ILIQ 

CONDENSATION LAW 

I = Al ♦ BIPRO · ( P / R O ) 

WC = ' 

K - ( R O - ROSAT) FOR RO;» ROSAT 

O FOR ROsCROSAT 

SYMBOLS 

V = 1 m3 UPPER DOME VOLUME 

Ρ ( k g / c m
2
) UPPER DOME PRESSURE 

RO(kg/m
3
) DENSITY OF THE STEAM IN THE UPPER DOME 

ROSAT ( k g / m
3
) DENSITY OF SATURATED STEAM AT Ρ 

| (KCAL/kg) ENTHALPY OF THE STEAM IN THE UPPER DOME 

ISAT (KCAL/kg) ENTHALPY OF SATURATED STEAM AT Ρ 

ILIQ(KCAL/kg) ENTHALPY OF SATURATED WATER AT Ρ 

WC (kg/sec) CONDENSATION MASS FLOW RATE 

ΑΙ = 460.456 

BIPRO = 103.25 
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WALL 

HLVSPLVSLSUR(TPASU(3)-TLVSU(3)) 

HLVSPLVSLSUR(TPASU(2)-TLVSU(2)) 

HLVSJ'Ly^SHLSURÇTP^SUtl^-JJLV^m^^. 

SUPERHEATER LV. 

TO THE TURBINE 

Fig.;i-18' 
60-1β24 

WREQ · Η (3) 

ALVSLSUR R O O Í - ^ - t l í
3
! STORED ENERGY 

d t 

Ρ, TLVSU (3) 

WREQ · Η ( 2 ) 

ÄLVS · LSUR· RO (2)· ±ϋΰί 
dt 

Ρ, TLVSU (2) 

WREQ · Η (1 ) 

ÄLVS LSUR RO (1) 
dH(1) 

dt 

W R E Q · i 

ENER6Y CONSERVATION LAW 

ÄLVS-LSUR-RO M ) ·
 d H ( 1 )

 = W R E Q ( i -H(1) ) ♦ HLVSPLVS LSUR (TPASU (1) - TLVSU (1)) 
dt 

ÄLVS· LSUR RO ( 2 ) · - ^ ^ - = WREQ(H(1) -H(2) ) + HLVS PLVS LSUR(TPASU(2)-TLVSU(2)) 

ÄLVS-LSUR RO(3)-
 d

 " <
3 )

 = WREQ-(H(2) - H(3)) ♦ HLVS PLVS LSUR· (TPASU(3) - TLVSU (3)) 
d t 

STEAM TEMPERATURE 

TPASU(i) 

TLVSU ( i ) 

Η ( i ) 

¡ 

Ρ 

WALL TEMP. IN THE ¡ * " CALL °C 

TLVSU (i) = 1.3333 H(l) (kcal/kg)+1.0937 P(kg/cm
2
) -686-64 

SYMBOLS 

in 

. ID CALL °C 

th 

STEAM TEMP. IN THE i' 

STEAM ENTHALPY IN THE ¡— CALL KCAL/kg. 

ENTHALPY OF THE STEAM IN THE UPPER DOME KCAL / kg 

SYSTEM PRESSURE k g / c m
2 

ROd) = STEAM DENSITY IN CELL 1 kg/m
3 

RO(2) = STEAM DENSITY IN CELL 2 kg/m
3 

RO(3) = STEAM DENSITY IN CELL 3 kg /m
3 

ALVS = CELL CROSS SECTION m
2 

LSUR -. CELL LEN9HT m 

PLVS = CELL WETTED PERIMETER m 

HLVS = HEAT TRANSF. COEFE KCAL/m
2
sec °C 



STEAM TEMPERATURE VS DENSITY AT DIFFERENT PRESSURES 

F«g 1-19 
GO-1825 



Fig. 1-20 
60-1826 

STEAM TEMP. VS. ENTHALPY AT DIFFERENT 

PRESSURES. Τ = 1.3333 ¡+1.0937 P-686.64 
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Fig. 1.21 
GO 1852 
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RESPONSE TO A STEP OF 50 RC.M.WITHOUT SPEED LIMITATION 

108 r 

106 ■ 

104 ■ 

102 ■ 

loo L 

RA = 10"
2
 R5= 2 5-10"

2 

n (7.) 

25 ROCON(p.c.m) 

50 

50 ■ -ji-ROCON (p.c.m/sec.) 

100-

150 _ 
10 12 14 16 18 20 22 24 26 28 30 32 34 36 

Time (sec ) 

i5 



E 
ύ 
d 
υ 

β 

too 

TO 

1 

0 

( 
Fig.1-28 
30-182Q 

LIMITS OF EFFICIENCY OF THE SYSTEM CONTROL 

Rod reactivity span : +200 p.c m , -300 p.c.m. 
Maximum rod speed :15 cm. /sec. 
Time constant of rods : 1 sec. 
1. 100 p.cm. step disturbance 

, 2. 50 p.c. m. step disturbance 
3. 10 °C step disturbance 
4. 5 °C step disturbance 
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UNLOADING A N D LOADÍNG OF A CÍNTRAL FÜSL LLLMÍNT 

ΓΜΕ BAR 3P££D 13 ÜMJTCD TO IQ P.C.M. JstC. 
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VARIATION OF POWÍ.R 1 0 0 75. S % Pue MINUTL (PROGRAMMC 1) 
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VARIATION OF POWER FROM 100*/. TO 75*/. .57. 
(PROGRAMMED 
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ATION OF POWER FROM 100*/.TO 75V. : 5°/. PER MINUTE 
(PROGRAMME 1) 
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VERY SLOW VARIATION OF POWER FROM 1007. TO 25V. 
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Fig.1-45 
GÒ-167Õ 

VARIATION OF POWER FROM 1007. TO 257. 
(PROGRAMME 1) 

Curve 1 : 57. per minute, R3=0 
Curve 2 : 57. per minute, R3= 0.5 
Curve 3 . 10*/. per minute, R3O.5 

VARIATION OF POWER FROM 1007. TO 
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STABLE REACTOR : CASE 2 WITH PROPORTIONAL CONTROL 
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FIG 2-2 

Characteristics of the primary valves 
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Characteristics of the primary pumps 
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FIG 2-6 

Fi F2 F3 as function of Y2 
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FIG. 2-7 

Position of v3 vs Y2 for Fi constant 
Fy is constant Y5 completely open 



FIG. 2-8 

Flow in the heat exchanger and in the reheater (F2) as function of the total flow F-¡ 

1000 

500 

-si 

Fi (kg/sec) 



FIG. 2-9 

Flow in the reheater (F5) as function of the total flow Fi 
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Constant primary flow 
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FIG. 2-16 

Organic input temperature and 
variable primary flow 
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FIG. 2-17 
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FIG. 2-20 
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Scheme with bypass 
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Scheme without by pass 
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Scheme without by pass 
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FIG. 2-26 

Response to α primary flow step of 2°Λ> 

for different power levels varied according to 

the scheme C. 

The primary flow and the organic temp, 

are varied in the same time in order to 

maintain the reheater height in the Benson 

and the steam output temperature constant 
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FIG 2-27 
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FIG. 2-29 
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FIG.2-30 
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APPENDIX A 

SERVO-MECHANISM ANALYSIS 

OF THE 

ORGEL REACTOR CONTROL SYSTEM 

1. INTRODUCTION 

The scope of this study is to complete and 
generalize some results concerning the control loop system, 
given by the analogue simulation. 

The mathematical tool used is the servo 
theory; this theory assumes that the studied physical systems 
are described by sets of linear differential equations with 
constant coefficients; this is not the case for the kinetic 
equations of a reactor, which is why this study is valid only 
for small variations around a specified steady state. The 
method is not so restrictive as it would seem; the stability 
problems are described by equations of small variations which 
are actually linear; on the other hand, it presents the great 
advantage to give the analytic relations which link the different 
parameters of stability and, even to a certain degree, the 
transient response, which is not possible when using a numerical 
method; moreover, one must check the validity of the theory 
on the particular cases of the 100 and 250 MWe prototypes studied 
previously by analogue or digital methods. In fact, the real 
limit of the method is on the transient response when the 
limitations on the reactivity and velocity of the control rod 
are reached: obviously, these limitations cannot be examined 
when only the linear phenomena are taken into account. 

Thus, the same sets of reactor equations 
used already in the analogue simulation are retaken, but they 
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are linearized in order to obtain the complete description of 

the reactor as a control element; then this element is used 

in a control system and the entire system may again be examined 

for stability and transient réponse. The type of transient 

apt to be more disturbing for a nuclear power plant is usually 

not a change in the power level demand which can be limited 

externally to any desired value, but an internal change in 

reactivity during which the thermodynamical quantities of the 

power plant do not shift perceptibly because of the important 

time­delays involved in the circulation of the coolant; this 

justified the fact that, in this study, no plant is attached to 

the reactor to remove the power, which is however impossible 

without a good transfer function representation of the heat 

exchanger. 

2. THE REACTOR AS A CONTROL ELEMENT 

2.1. Solution of kinetic equations for sinusoïdal reactivity 

input 

The response of the reactor is studied from 

a one­point black­box type of approach, i.e. the only significant 

reactor constants that are present are OK, 1 and n in a 

multiplying medium; the temperature coefficients will be 

presumed to be zero. 

The kinetic equations are the familiar ones: 

dn
 K

eff
 ( 1

 ■/> ­ ; Λ 

dt ï
 n

 * E >­i
 C

i 
i = l 

where r 4, >· 
dC. K ._ ^6. 

i e f f „ . r 

IT
 =

 ­*n
 n

 ­ *i
 c

i 
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let us take ÍK = eff 
K rr eff 

with Κ #=1 
eil 

then: 

dn 

dt 
= — η - J_ dC 

1 = 1
 αΤ" 

fi _Ak 
dt ι

 n
 - *i

 C
i 

This set of linear equations has no constant 

coefficients, but, if we assume sufficiently small sinusoidal 

excursions of η around the static value η , these equations can 

o 

be approximated by a set of constant coefficients. This 

calculation is trivial and developed for instance inyfoef. 1./ 

The searched transfer function, indicated in Fig.2.1., is the 

following : 

£K(S) 
Reactor transfer 

function 

no 0R V S > 

Sn(s) 

F i g . 2 . 1 . 

o~n(s) 
η £K(s) " "'R^R 

o 
= 0riGT 

s i 
r 6 

ι *y A 
i = l l ( s + x . ) 

where s i s t h e L a p l a c e o p e r a t o r ; i t becomes, i n expanded formi 

C
 6 

• η a + a „ s + . . · + o 1 
a 6 s 

ñ »Κ g -— 7 
o b e + b s·* + . . . + b s ' 

For a s i n g l e group of d e l a y e d n e u t r o n s : 

ín 
η Τ κ 

o 

where 

s + *-
s l ( s -ι- ΤτΓτψΓΪ 



183 

and i n expanded form: 

¿n 
n SK 

o 

w h e r e : 

= 0 GL 

^R R 

rs 

A 
o 

A
i 

A + A..S 
o 1 

V *
 B

2
s 2 

* "Vi 

= 1/1 

( 2 . 1 . ) 

1
B i

* 
1 B2 = 1 

♦A: 

Fig. 1 and 2 show the amplitude and phase 

frequency response (substituting s by jd>) of the 250 MWe 

prototype in the two cases of a single group and six groups of 

delayed neutrons when the power level is 100% and the reactor 

irradiated. 

The calculations have been achieved with the 

help of a FORTRAN code* As it can be seen, the transfer 

function (2.1.) is a good approximation, easy to use for later 

determining analytical expressions; besides, it will not 

change the general results of the study. 

. If oK is a step function, when t — > + O* 

— — /V p - — y + O* , i.e. when a small amount of positive 
η o o 

1 

reactivity is inserted into the reactor, the power level rises 

infinitely. 

2.2. Feedback loop due to temperature coefficients 

The physical effects of the temperature 

coefficients will be translated in servo-loop feedback which 

modifies the elementary reactor transfer function. Because of 

the presence of this feedback, the problem of stability will 

exist. 

Two-path temperature coefficient feedback 

is considered according to the block diagrams of Fig. 2.2·, 

which are equivalent· 
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í k + 
+ A * 

U 

* V R
G

R 

Fuel 
temperature 
c o e f f i c i e n t 

* u 

Coolant 
temperature 

coefficient 

in 

o^R R 

¿n 

Combined feedback 

transfer function 

F i g . 2 . 2 . 

The t o t a l feedback r e a c t i v i t y i s : 

£ K (s) = £K ( S ) + ¿K ( S ) 
t u e 

Assuming that the steady­state program of the 

reactor is a constant coolant flow with a constant inlet coolant 

temperature T. (which is not restrictive because of the insensibility 

of the thermodynamical quantities during an internal change of 

reactivity), and taking again the equations of the heat transmission 

of the analogue reactor model, we get: 

where 

t>K (s) »of £ T * ( S ) +<* &*(») 

t u _ u -

u 

ST* 

= y £τ~ + tf ( ¿τ - ¿τ ) 
•c c "u u c 

= tf fr 
"c c 

(2.2.) 

(2.3.) 

(2.4.) 

©T and dT are email variations about the 
u c 

steady­state values of the average fuel and coolant temperatures 

of the representative channel, the representative channel being 

included between the central channel and the channel of medium 

power and defined by its radius r , so that: 

o 

n(r ) » 
o 

/:■ 3
 (r) rdr (r) rdr 
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where n(r) is the radial thermal flux and R the reactor radius. 

Combining the Eqs. (2.2.),(2.3.) and(2.4.) gives: 

CK.(S) .^ tf* «T (·) ♦ t ( Y * ­ y ) + o < y 1 ÍT (s) 
t u

 e
u u Hu

 #
c *u c 'c I c 

and using the notations: 

* 

u * "««Χ 

^ c c ^c u u c 

( 2 . 5 . ) 

( 2 . 6 . ) 

£ K t ( e ) .=©<* OT..(s) + * * í r _ ( s ) ( 2 . 7 . ) 
u u c c 

ie of oT and o' 
u 

a re given by the following se t of d i f f e r e n t i a l equat ions 

The v a r i a t i o n s in t he t ime of ÒT and ÒT 

u c 

A, 

A 

ir 
U 

d t 

Λ 
g dt 

d 6τ 

A -
/ e dt 

K Sn ­ A ( Si ­ £τ ) 
" g 

A ( A τ ­ ST ) ­ B ( ST ­ ST ) 

u g g e 

B ( ST ­ ør ) ­ C ¿T 

g e c 

where A, B and C are heat t r a n s f e r c o e f f i c i e n t s obtained from 

the s t e a d y - s t a t e wi th W° = Kn power of t h e r e p r e s e n t a t i v e 

channel : 

A «= 

B = 

C -

«o ».o 
Τ - Τ 

u g 

Τ - Τ 
g c 

T° - T. 
c i 

( 2 . 8 . ) 

( 2 . 9 . ) 

( 2 .10 . ) 
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Taking t h e Laplace transforms g i v e s : 

$T ( L· Β + A) = Κ £ η + Α £ τ 
u / u 

£ T ( Λ β + A + Β) » A ¿T + BOT 
g ~ g u 

dT ( ¿ S + B + C Î ­ B O T 
c / c g 

( 2 . 1 1 . ) 

( 2 . 1 2 . ) 

( 2 . 1 3 . ) 

Combining Eqs· ( 2 . 7 . ) , ( 2 . 1 1 . ) , ( 2 . 1 2 . ) and 

( 2 . 1 3 . ) , the t r a n s f e r f u n c t i o n i n d i c a t e d in F i g . 2 . 3 * i s : 

ÍK. 0 T G T ( s ) Sn 

F i g . 2 . 3 . 

η £κ 
o , t * = 0 G = 
Vn

 F
T T 

C + C„s + C_s 
o 1 2 

2 3 
D + D. s + D_s + D0s 

o 1 2 3 

( 2 . 1 4 . ) 

where: 

<* „ o u V 

c V \ o 
u V 

|A(B+C) ♦ 

L /gAc 
BC — c 
—— + 

o<\ 

¿\ 

/A+B B+C> 

A u >̂ * g z*
4
 c 

C « ^ u W
0 

2 
/~u 

ABC 

/ ^ u ^ g ^ c 

) = AB, + A Í 2 * £ ) + A(B+C)+BC 
1

 e
/ * u A f l

 +
> A u /

l
c

 +
 A g A c 

A A+B B+C 
}
2

 =
/ C u "

 +
 T ĝ"

 + 

D 3 ­ l 

AB ■] 

( 2 . 1 5 . ) 
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2.3» Reactor stability 

Fig. 2.4. represents the block diagram of the 

reactor and its overall temperature feedback: 

ík 

—f^ n
o*R

G
R 

*n 

e­> 

Fig. 2.4. 

The sign 0TG_ has been reversed in order to 

conserve the usual servo­language convention for the closed­loop 

feedback transfer equation. 

η Π Γ 0 G 
^RT RT 

0 G y
R R 

^ΚΊ R Τ 
(2.16.) 

To examine the reactor stability, it is 
necessary to employ the Nyquist plots of the open-loop transfer 
function: 0„0mG„Gm. 'R'T R Τ 

E q s . ( 2 . 1 . ) and ( 2 . 1 4 . ) g i v e w i t h a r e v e r s e d 

s i g n f o r ( 2 . 1 4 . ) 

0 0 G G 
YTRI 

2 3 E + E „ s + E „ s +E„s o 1 2 _3_ 

ν+ν2+ν3+ν4+ν5 ( 2 . 1 7 . ) 

w h e r e : 

E =-A C 
o o o 

E = - ( A C.+A.C ) 1 o l i o 

!- (AoWl' 
E , = - A , C 0 3 1 2 

F , = 

F„ = 

FA = 

F. = 

F, 

B D 1 o 

B D . + D 1 1 o 

Β D -ι- D 1 2 1 

B l + D 2 
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In Figs. 3 and 4 are reported the Bode diagrams 

of the open­loop transfer functions of the 250­MVe prototype with 

initial core and equilibrium core. 

Fig. 2.5· gives the shapes of the correspond­

ing Nyquist plot·: 

Initial core 

Ρ ­ o 

R ­ 0 

Stable (C <o) 
o 

­1 

( 

o­

o+ 

Equilibrium core 

I P - . 

R - - 1 

Unstable (C >o) 

9 

Fig. 2.5. 

It can be seen that the initial core is stable, 

the equilibrium core unstable, the stability depending only on 

the sign of C · 
o 

Indeed, when s = j O-* + o 

E A C j 
0 0 G G Λ/ —°- = —2_2— 
*JT T R T F „s B D 

1 l o 
->t» 

A B , D are positive quantities; thus: 
o, l o ' 

si C > o Ø^G^G,,, ■> 

o ' *KT R T 

+ 0» 

si C < o ØrAG^G,,, 
o 'R'T R Τ 

-0· 
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The closure of the diagram f rom cj= + o and OJ = - o 

is always achieved in the counterclockwise sense with an angular 

rotation oftt (F φ o) . 

The stability condition is: C = o. Taking 

again the expression of C (Eq. 2.15.), this condition becomes: 

o 

._i, l t C(i.i) 

Substituting the values of A, B and C given 

by the Eqs. (2.8., 2.9· and 2.10.): 

• * o 

OC T - T. 

2- = -ü i (2.18.) 

ο< T° - T. 
^ U C 1 

and combining Eqs. (2.5·), (2.6.) and (2.l8.); 

the stability condition is thus: 

where 1 
s 

= 2 
* u 

Vc 

-

T° 
u 

' T 
o 

<*c 

* u 

- T° 
c 

- T. 
1 

s 

(2.19.) 

<
 X 

+ 1 

The stability is independent of the reactor 

power level for a constant flow steady-state program. It can be 

verified that this limit is unchanged for six groups of delayed 

neutrons. For a negative fuel temperature coefficient and a 

positive coolant temperature coefficient, the greater is the fuel 

temperature and the smaller is the coolant span (ΔΤ = T - T.), 

o i 

the more the reactor is stable. 

The V and V coefficients take the axial 
u c 

statistical weight of the temperatures into account and the 

"representative" channel take the radial statistical weight of 

the temperatures into account; the coolant temperatures are 

independent of the radial statistical weight because of the 

constant coolant temperature span in every channel. 
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For a cosine axial flux: 

V. u 

= 1 

and 1 = — u 
ΔΊ 

* 1 (2.20.) 

In thi case, the coolant temperatures are 
thus independent from the radial and axial statistical weight; 
as the fuel temperature coefficient is negative« the statistical 
weight of the fuel temperatures has a stabilizing effect. 

In Fig. 5 are reported the stability limits 
in the following cases: 

Representative channel : ν = 
(with axial statis. weight) 

Averaged channel (with 
axial statistical weight):V = 

u 
Averaged channel (without 
axial statistical weight):V = 

- V - 1 3' c * 

J' 'e" 1 

V = ι c 

In a logarithm plot, the difference between 
these cases is small, and a good pessimistic and easy approximation 
is to take the second case. The numerical results are given in 
the following table: 

250-MWE prototype 
T. = 266°C 
1 

T° = 3l8°C c 

Τ = 672,5°C for the "representative11 channel 
= 658 °C for the averaged cha nnel 

case 1 

10.1 

case 2 

9.7 

case 3 

7.5 
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In Fig. 6 are reported the stability limits 

of the 100­ and 250 MWe prototypes comparatively with the 

numerical previous results. The agreement is good. 

100 MWe­prototype 

292°C 

328
e
C 

762°C 

1 = 15.8 

s 

2.4. Reactor power coefficient 

Taking again the reactor closed­loop transfer 

function (2.16.), and developing it with (2.1.) and (2.17) gives: 

R e a c t o r 

in 
n oK 

o 

: 

ÍK, 
o RT RT 

F i g . 2 . 6 . 

Go + G s + . . . 

^RT~RT 
H + H s + . · . 

o 1 

on ^ 

* v
5 

» H 6 .
6 

( 2 . 2 1 . ) 

G = A F„ 
0 o i 

G.. = A F 0 + A„F„ 

1 o 2 1 1 

G0 = A F , + A„F 0 

2 o 3 1 2 

G, = A F. + A„F„ 

3 o 4 1 3 
G, = A + A .F , 

« o í k 

G_ = A. 

Η β E B„ 
o o i 

H„ = E + ( E , + F j B , 
l o 1 1 1 

Η2 = ( E t ♦ Ft) ♦ ( E 2 ♦ F 2 ) B l 

H
3 =

 ( E
2

 + F
2

) + ( E
3

 + F
3

) B
1 

H4 ­ ( E 3 + F 3 ) + F 4 B t 

H5 = F 4 + Bt 

H, = 1 
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When C i· negative, the reactor is stable 

o 
and all the coefficients Η , Η , Η , Η and Η, are positive 

(Η_ and Η, are always positive) or all the roots of 

6 
( H + H e ♦ ... ♦ H,s ■ o) are negative. v
 o 1 o 

When C is positive, the reactor is unstable, 
6 

Η at least is negative and the equation (H + ... + Hfis s o) 

has at least one positive root. 

(H ♦ H e ♦ ... + H,s ) « (B, + ΒΛβ) (h + h.· + ... ♦ h^s
3
) 

o l o 1 ¡β o 1 5 

where 

Η. 

E 

E + F 

1 1 

E + F 

2 2 

3 3 

h, = F, 

h_ = 1 

The problem comes to study the sign of the 

roots of the equation (h + h s + ... + h s ) = o. 

For a reactivity input in step function: 

when t 

where : 

in 
η <ΓΚ 
o 

SK 
¿"n/n 

Η 
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gives (Eq. 2.15·): 

Substituting the expressions of C and D 

o o 

C
o · Γι 1 + 1 <] 

D~ " ^ u I Ã
 +

 Β
 +

 C ' ¿* i 

- -«** ( τ° - τ4 ) -a* ( τ° 
u u i c c 

V 
t h e n : 

Γ ν (Τ ­ Τ ) 
­ ^ 7 — = ­ *

C
 ° * · (o¿ *0< 1 ) ( 2 . 2 2 . ) 

J n / n 2 c « ­
'u s 

Doing o n / n =194, øK i s t h e r e a c t o r power 

c o e f f i c i e n t c*£ : 

D<w(p.c.m/*) = 10~
2
 . ^| (o^ ^C^lJ (2.23.) 

with o/ and ©/ in p.c.m./°C. 
*^c u 

p^ is constant in the temperature coefficients 

plan on any parallel to the stability limit straight. 

ρζ is a measure of the reactor stability 

degree; it is negative for a stable reactor, positive for an 

unstable reactor. 

Prototype 

Core 

0< pcm/°C 
c 

tfu Pcm/°C 

0<w Pem A 

100 MWe 

Initial 

+ 1 

­ 1 

­ 6 

Equilibrium 

+ 6 

­ 0.26 

+ 1.45 

250 MVe 

Initial 

­ O.25 

­ 1.5 

­ 8 

Equilibrium 

♦ 5.O 

­ O.45 

+ 0.24 

For a stable reactor, the power coefficient 

has an immediate signification: if a small and given amount of 
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positive reactivity ek is inserted into a stable reactor, the 
power, if allowed to be free, will stabilize itself at a 
superior level, the variation power being given by: 

dn/n = - dk/v . o w 

Example: in the case of the initial core 
of the 250-Mtfe prototype, when dk = 50 pem, £n/n = 6,25%; 

o 
Fig. 5 gives the lines corresponding toot = íl, - 10, - 100 pcm/%; 
Figs. 7 and 8 give the amplitude and phase of the closed-loop 
transfer functions of the initial and equilibrium core; Fig. 9 
gives some analogue cases of verification of the power coefficient. 

It should be recalled (Ref. 1, p.206-7) that 
the maximum initial value for on/n is given by: 

£n _/n = -c p- (2.24.) 
mar o Ã - Ò k 

when ¿k is small with respect tojo, and neglecting, during this 
small initial time, the influence of the temperature coefficients. 

In the present case, 

with Å = 395.5 pem 
-4 1 = 5.4,10 s 

and when dk = 10 pem: 

on /n .=¿̂ 2.6%, the time constant of the initial peak being max o 11 
l/(/f>- «k) = 0.l4s«; therefore, very small with respect to the 
fuel rod thermal time constant, that is 2 sec. 

3. THE REACTOR CONTROL LOOP 

An external control loop is needed, when the 
reactor is unstable· It can be operated as a proportional 
regulating system or an on-off type of regulating system. In a 
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proportional regulating system, the position of the control rod 
is changed proportionally to any error created, either by a 
power demand change, or by an internal system transient; in a 
discontinuous regulating system, no control is attained unless 
an error, which is greater than some fixed percentage, is set up 
in the control rod. It is known, and this has been verified on 
occasion of the analogue computation, that the on-off type control 
system is inadequate when the reactor by itself is inherently 
unstable, the presence of a dead zone involving the control system 
to be in continuous oscillation. Fig. 3*1* shows the servo-block 
diagram of reactor control loop used for stability analysis: 

S*i 

Se 

Sk n ØB-G-. o RT RT 

Control 
mechanism (reference level) 

Fig. 3.1. 

The reactor output is measured by a neutron 
detector; this power n is then compared with the reference 

n-nQ 
power level, the activating error £. = — — is amplified and 

n 
finally controls an activator which moves the rod in order to 
obtain the necessary antireactivity to eliminate £. · During 
the reactivity change Ok., it can be«sumed that the power level demand n does not change, 
constant T¿ . 

The rod is affected by a time 

Ve can assume that the reactivity to be 
inserted is generated according to the general equation: 

R- + R« « 1 __2 + R s 
dp = s 
1 1 +<es 

(Rt, R2, R3 > o) 

where: 

I is a proportional term 
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R is an integral term 

R. is a differential term 

The problem consists in determining the terms 

or a combination of these necessary terms to stabilize the reactor. 

3.1. Effect of a proportional term 

Ve only have: 

R. 
0 G „ L· „ J^_ 
p
c c ζ 1+ fs 

(3.1.) 

Considering the block diagram of Fig. 2.1. where 

ík &, ­ Si 

80 G 
c c 

e = ίη/> no 
S n = n 0__,G__ d k o^RT RT 

the closed-loop transfer function of the reactor control system is: 

Sn 
"T̂ i 

0 G FRT RT 
1 + 0 Ø^G Gnm 

*c RT c RT 
(3.2.) 

For stability problems, it is necessary to 

study the Nyquist plots of the open­loop transfer function: 

0 0 G G 
"c^RT c RT 

E q s . ( 2 . 2 1 . ) and ( 3 * 1 · ) g i v e : 

In 
» 0 C 

R„(G ♦ G^s + . . . ♦ G_s ) 
l o l 5 

( 1 ♦♦t f s ) (H +H m + . . . ♦ H , s 
o l o 

or using the following notation: 
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ia 
" o * 

R.. (G + . . . ♦ G^s^) 
_i 2 2__ 

7 
J + . . . ♦ J_s 

o 7 

Ì3-3-) 

H 

J„ = *H + H, 
l o i 

2 1 2 

3 2 3 

J a <K + H. 

4 3 4 
J5 ­ *H4 + H5 

J
6 * *

H
5

 + H
6 

J7 ­ VH6 

tg ί ^ κ χ ) * * η · η » 
The study of the l imite of G G and of 

C KX -► + o or +·» gives in all cases the follow­
ing elements of the Nyquist diagram: 

- 01 
> 

Fig. 3.2. 
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Fig . 3*3* g ives the complete shape of the 

Nyquist diagrams in the case of t h e 250-MVe pro to type for two 

values of *C : 1 and 10 s e c . 

Ρ = 1 

R a l 

s tab le 

­> :° >
 db

 . r 
+o 

ω = 0.3 

•f = 10 sec . 

R± = IO"
2 

- 0 0 

CO 0 .3 

F i g . 3 . 3 . 

There is stability if the point (­1) is 

enclosed or when β > + 0 

in 
n
o£ 

R G 

1 o Do , 

TT'­
8
!?

 (with Co
 >
 o) 

o The stability condition is then: 

R1 ψ > 1 where * > g-
1 C 1 Do 

o 

In Figs. 10 and 11 are reported the 

corresponding Bode diagrams. The stability is better for small 

values of t because of the greater enclosure of the point (­1); 

however, the inertia time constant is not a sensitive parameter 

from a stability point of view. For illustration are reported 

in Figs. 10 and 11 the Bode diagrams of the 100­MVe prototype: 

the results are about the same; this allows to conclude that 

the thermal time constant of the fuel tPå (2 sec. in the case of 
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the 25O MVe, 5 sec. in the case of the 100 MVe) has no significant 

influence én the inertia time constant of the control rod. 

n 

»o* 

R. 

1 *<m 
0 G F
RT RT 

1 ­ j«< 
t G 
RT RT 

Fig. 11 and the previous expression show that 

the phase loss is equal to 45* when < is varied from O to 1 sec. 

(for ω m i)j it is equal to (arctg 10 ­ arctg l) #40· when "C 

is varied from 1 to 10 sec. 

Fig. 3.4. gives an idea of the stability 

system in function of the inertia time constant of the bar; 

a reasonable value is *t equal to 1 sec· 

Phase loss i 

Fig. 3*4. 

Taking the reactor control system closed­loop 

transfer function ( 3 . 2 . ) and developing i t , g ives : 

Sn 
η 5 k. 

o i 

00 

0 G 
^RTC RTC 

L + . . . ♦ L.­f. 
o 12 

12 

Κ + . . . + K . . S 
o 13 

13 
(3 .4 . ) 

For an input «k. in s tep funct ion, when 

Sn 
n S k 

GoJo 

«I ' V*iVV 
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f* C C 
where d k l , o t . . . _ . . o 

Τ ^ *
 ÍR

1 * D"
) W i t h R

i
 g r e a t e r t h a n

 D~ 
o o * o 

Substituting the expression of C and D , 

o o 

as it has already been done: 

IO"
2
 S'ki _ , 

S i « R. ­ o^ 

n/no 1 w 

This relation might be: 

whereo< is the power coefficient for the unstable reactor 

P¿* is the power coefficient for the unstable reactor 

made stable by the proportional term. 

For instance, for the equilibrium core of 

the 250­MVe prototype 

*C = + 0.24 pcm/%. 
w 

If we want to stabilize it in the conditions 

of. the initial core, it must be taken ©<' » ­ 8 pcm/% and, for 

this, take R = 8.24 pcm/% = 0.824,10"
2 

These relations have been verified by the 

DYNOR code, as shown in Fig. 12. 

3.2. Effect of an integral term 

In this case: 

Ra 

0
c
 G
c
 =
 s(l+fs) 

X RÄ(G + ... ♦ Ges ) 
2­ .,

 a
 2 2 

n
o·** s(J + ... + J_s ) 

o 7 
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when s__ 
diagram: 

The study of the amplitude and phase limits 
►o or oo gives the following elements of the Nyquist 

+ o 

^-4-

Ί 
\ 

-o\ 

V 

- = - * -
\ 

t-o 

J* > o where 
ri < o with J Q / J 1 < Go/G J. < o with J / J >Go/G, * o i l 

F ig . 3.5> 
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The following figure gives the shapes of the 

Nyquist diagram for the 250­MVe prototype: 

Fig. 3.6. 

R
2 

- IO"
5 

y 
s 

/ 
/ 

/ 
I 

1 

; - . · 
ι 
t 
\ 

\ 
\ 

\ 
\ 

\ 

A 

0 + 

.* *1 

^ 1 
y 1 

γ" "/^^ Ηβ» 

y<y\ '"-»> 
\ 
\ 

\ \ 
\ 

\ 
\ 

" - -1 
1 

- 0 

Ρ = 1 

R =­1 unstable 

Ρ = 1 

R = 1 stable 

Ρ ­ 1 

R =­l unstable 

The system is stable only for a certain range 

of amplitude values. 

3'3* Effect of a proportional term and an integral term 

In this case: 

R^s + R, 
a G 1 2 

"c c s(l + <s) 

In 
n
 £ 

(R_ + Re) (G + ... + G V ) 

­2 1 2 S__ 
•J 

s(J ♦ ... ♦ J_s ) 
o 7 

τ τ
 6 

I + .. . ♦ I,s 

o 6 
J s * ... 
o w 7. 

8 
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where 
o 

1 

2 

*3 

I
k 

*5 

h 

Β 

S 

= 

* 

= 

= 

= 

R
l
G
o 

R
i
G
i 

R
1
G
2 

R
1
G
3 

R
1
G
4 

R
1
G
5 

+ 

+ 

+ 

+ 

♦ 

R
2
G
o 

Vi 
R
2
G
2 

2 3 

R
2
G
4 

R
2
G
5 

It can be seen that the amplitude does not 

change when R is fixed and the ratio R„/R1 constant. 

The study of the limits when s — > o oreo gives 

the following elements: 

V
R
1 < 4

 + t
n +

° ' 

-7* 

­o 

+0» 

­o 
A 

Fig. 3.7­

In Figs. 13 and 14 are reported the Bode 

diagrams of the 250­MVe prototype for *f equal to 1 and 10 sec· 

and R equal to 10"
a
 for 1*«/̂ ,. equal to l/lO· 
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The following figure gives the shape of the 

corresponding Nyquist diagrams : 

= 10 sec. 

A stability limit is at least: 

(see Fig. 3·7·) 

ORGEL p r o t o t y p e 

*C = 1 s e c . 

£ ♦ fi/1) i n s e c . "
1 

100 MVe 

6 

250 MVe 

8 

R
2 

Ør.ØnmĜ G,™, » (R„ + ­=) 0 M G M 

C RT C RT 1 s ^RT RT 

R. 
R
l
 (1

 R̂  » ' "RT'RT 
■) 0 G 
' " D Î T " ! 
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Vhen R and < are fixed: 

- R. determined in order to obtain a reasonable value for*« 
1 w 
(about - 10 pcm/%); 

- τ£ chosen as minimum possible mechanical value (about 1 s e c ) ; 

the amplitude rises and the phase is reduced when the ratio 
R0/R increases as it is shown by the previous expression (see 
2 X 
also Figs. 13 and 14); a compromise value is then necessary 
for the R0/R„ ratio. 

It is interesting to compare Figs. 3·3' and 
3*8. (for Έ* = 1 s e c ) , where the R. value is equal in the two 
cases: it can be seen that the stability is about the same 
(similar values are obtained for the amplitude and the phase 
around the point -l) taking R0/R„ = l/lO in the second case; 

2 1 if R0/R„ is greater than 1/10, the amplitude rises, but the phase « 1 
loss is increased; it seems that RQ/R4 equal to about l/lO 

2 1 
c o n s t i t u t e s an optimum va lue ( f o r R„/R4 = l / l O and Ci = 0 , 5 , the 

1 2 1 
phase l o s s i s a r c t g — φίΟ°). 

F i g . 15 i l l u s t r a t e s t h e s e r e s u l t s in good 
agreement with t h e o p t i m i z a t i o n po in t o f the c o n t r o l loop chosen 
a f t e r analogue computat ion . Taking aga in t h e c l o s e - l o o p t r a n s f e r 
f u n c t i o n of t h e r e a c t o r ( 3 « 2 . ) where: 0„G„ = ;„ -r-> for an 

f C C 8 l l + * C s / 
input o k . i n s t e p f u n c t i o n : 

£ n / n o s 
­—£■■£— ^ jj » o when t—>. oo 

The i n t e g r a l term l e a d s back t h e power l e v e l 

t o i t s i n i t i a l v a l u e . 
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3 . 4 . Effect of a d i f f e r e n t i a l term 

3 . 4 . 1 . D i f ferent ia l term alone: 

»,e. ï 
C C 1 + 't» 

ia_ b. R e (G + . . . + G_s ) 

o*
5 

J + . . . ♦ J„s 
o 7 

The study of the amplitude and phase limits 

give the following elements of diagram: 

,-o 
f 

ι * ' 

Ko. 
k li« 

-O ι 

^ ^ -

J± > ο where 

J„ < o with J /J < G 'Η 
1 l o l o 

I Jt < o with Jt/Jo > G1/G{ 

Fig. 3.9· 

The corresponding Nyquist plot of the 250­MVe 

prototype is the following: 

The system is always unstable« Fig. 3.10. 
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3.4.2. Combination of a proportional and differential 

term 

R + R s 

0 G = — 6-
F
C C 1 ♦ /«'s 

< (R, + R,s) (G + ... + G cs
5
) 

ín 1 3 o 5 n t o
c J + ... + J„s 

o 7 

when ci ■ + o 

Sn 
n
 É o *» 

R G 
1 o 
H 

­ R ­r— (identical limit for the proportional 
1 C 

o 

term alone). 

Vhen CO· + o* 

R«G. 
_a ^ . -1-1 . j 

o
c
 7 

­ o 

­ CO 
tg ( 0 ^ ) ~ (H5.I/< ) - (RI/R3+G4/G5)" 

when (H +l/< ) > ( R ^ R + 64/65) 

OO 

The system is stable if the condition R > 7— 

1 D 

is satisfied (closure condition of the point ­ l ) . 
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3.4.3» Combination of proportional, integral and 

differential terms 

R + R /s + R s 

0 G = — = *— 
F
C C 1 +<s 

2 5 
r (R0 + R.s + R.s ) (G + ... ♦ G_s ) 
ο η _ 2 l j o 5 

o *­ s ( J + ... + J_s ) 

o 7 

A f i r s t n e c e s s a r y s t a b i l i t y c o n d i t i o n i s 

1 A 
R_/R < — + ·*­ b e c a u s e o f t h e i n s t a b i l i t y o f t h e d i f f e r e n t i a l t e r m . 

2 1 /Ç 1 

Vhen CO > + o 

­£a > +0. (J < o ) 
n ç o 

o ** 

tg ( ø ^ ) y ­ o. 

Vhen CO —» + Oo 

in 
n
 £ ο° 

- o 

t g ( Ø r Ø ~ J /*^ : 7Γ when 

V
R
2 - £ * f» 

R
2 t?

 l 
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For R. = R_ = R. we have obtained the following 1 2 3 
Nyquist p l o t , always in the case of t he 250-MVe prototype: 

0 + 

Ρ = 1 
J R = 1 
s table 

- o » 

F i g . 3 . 12 . 
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3.5« Conclusions 

They are resumed in the following table: 

Transfer function of 

the control mechanism 

(inertia = o) 

R
i 

V
s 

R
! * V

S 

V 
R1 + R3s 

R
l
 + R

2^
B
 * R 3 S 

Stability 

stable 

stable 

stable 

unstable 

stable 

stable 

Stability 

conditions 

R
l > « w 

stable 

only in 

a certain 

range of 

amplitude 

values 

Rt < 1 

o 

Permanent 

response 

to a step 

function 

Sk¿ 

Γη **i 

n
o
 R

l "<*w 

in 
— = o 
η 
o 

on 
— s o 
η 
o 

r ík. 

on ι 

"o
 R

i "°<w 

£n 
n 
o 

It appears that ; 

- the proportional term is the stabilizing term; 

- the integral term leads back the power 

level to its initial value (reset); 

- the differential term is without interest 

for stability point of view (it brings 

nothing). 
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4 . STUDY OF THE TRANSIENT RESPONSE OF THE REACTOR VITHOUT CONTROL 

TO A REACTIVITY STEP 

Let us now s e a r c h t h e t r a n s i e n t response of 

t h e r e a c t o r t o i t s n o i s e . 

The t r a n s f e r f u n c t i o n of the r e a c t o r i s t h e 

f o l l o w i n g (Eq. 2 . 2 1 . ) : 

S n ( s ) / n G + . . . + G_s 

0 G . . i \° = ­
2
 2 ­r 

R̂T RT J k 7 s ) H+ . . . + H6Sb 

The r e a c t o r n o i s e i s s imulated by a u n i t ­ s t e p 

f u n c t i o n of amplitude o k , so t h a t : 

ík 
d­k(s) = ­ ^ 

s 

5 

τ 
G + . . . + G s 

ò n ( s ) / n = ¿k . ­ 2 ¿_ 
s ( H + . . . + H, s 

o o 

The inverse transform of this equation will 

give the transient response of the reactor. 

Ve have: 

6 5 
s(H + ... + H,s ) = s(B_ + s) (h + ... + h_s ) 

o o l o 5 

r- Ζ Ζ Ζ Ζ Ζ, Ζ Ζ,­

\ t \ / ο 1 2 3 4 5 6 

í)n(s)/n = — + — — + — — — + * + — — — + ·* + 
ο s s + s s + s_ s + s. s + s, s + s s + s. 

where: 

S
l
 = B

i > ° 

s
ni

 s
o»

 s
iï S

P<
 s
£ are the roots with reversed signs 

2 3 4 5 0 

of the equation (h + ... + h s ) = o 
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s_, s , s, , β are positive values and β, is a positive value 

for the unstable core. 

The solutions are the following: 

For the initial stable core: 

(6 

+ 
o " o 

ín(t)/n - vík(Z + Y " a ^ e ' V ) δ
 V 

G
o

 D
o 1 

where Ζ i s — = ­ r— ■ —­; , t h e n : 
ο H C o¿ 

o o w 

ín(t)/n = ­ — + Sk 
6
 -s.t 

° ­<w m
 i 

c ík 

Vhen t—>· +0· , on/n—^ - 7—, we have again the relation (2.22.), 

as expected. 

For the unstable equilibrium core: 

in(t)/n = - 5*. + £k (5" a. e " V 5k r.. ,«5. ­ s . t + ­ 6 t ) (4.1.) 

i=i -
 6 

where s, has alone a negative value. 

This last case is the most important one and 

has been studied numerically: the calculation of the roots of 

the equation (h + ... + h_s ) » o has allowed to check that the 
o 5 

time constants l/s , l/s_, l/s , l/s,, l/s_ are inferior to the 

second and very small with respect to - l/s, 5 this signifies 

that, in expression (4.1.), after a time near but superior to the 

second, the sum *CL aie"*
8
* becomes negligible with respect to 

the other terms and that the power variation is then only given 

by: 

è n/n jjr - -— + »7k
 r 

>— τ vka¿e 6 for t ̂  1 sec. 
e<w 6 ^ 

It is verified that the time constant θ = l/s, 

h. B D
 6 

is about equal to - 1 ¿ii. 1 o ■ 1 where C is a constant 

h TT k C C0*<
 Z 

o 0 0 2
 A
w 

(for an averaged group of delayed neutrons). 
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Ve then have: 

( 5n/n +Ζ±\φ0^ ík e ^ w * for t > 1 sec.) 
o t<w'" 1 

c and c_ being two characteristical constants of the reactor, 

where c must be taken as i/A for ö k « O (see 2.24.). 

In a semi­logarithmic plot, the representation 

of the quantity ( ¿n/n tflk/v ) as function of the time is then 

o "̂  w 

linear, the slope of the representative straight line being 

proportional to the power coefficient and its ordinate to the 

origin being proportional to the amplitude step; these properties 

are checked effectively in Fig. l6 where are reported for the 

25O MV­e prototype the power variations (given by the digital DYNOR 

code) which result from a loss of control simultaneously with 

a reactivity injection for two power coefficients about double: 

the searched linearity is verified well until power variations 

reaching 20%; it must be seen that an overpower of 10% is 

reached in 15 sec. when the power coefficient is equal to 0.25 pcm/% 

and in about 12 sec. when this power coefficient is double, this 

for a reactivity step of 10 pem. 

5. VARIATION OF THE POVER COEFFICIENT IN FUNCTION OF THE COOLANT 

FLOW 

It has been assumed till now that the coolant 

input temperature and flow are constant. Let us search what is 

the variation of the power coefficient when the coolant flow is 

reduced because of the stop of a primary pump. 

5.1« The reactor power is constant 

At the equilibrium: út has increased in an inversely proportional 

manner to the flow; the difference (T„ ­ T_), proportional to 

U G 

the power, remains unchanged; the difference (T ­ Τ ) has 
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increased inverse ly as the flow (which i s the same as assuming the 

cladding­coolant transfer coe f f i c i ent to be proportional to the 

f low) . 

Using again expression (2 .20 . ) g ives : 

rr% O mm 'p O 'T* O mt *p 0 

/ . H χ 8 ,_U__G G Cv 
( X

s -
 1 } =

 3
 (

"~~ÃT
 +

 AT
 ) 

d s ­ 1) # C3M * C, 

where C. and C, are two constants 

then: 

dl = $?■ (1 ­ m) 
s M s 

with m = (1 + j .
 G
 ^ T

 G
 ) (5.1.) 

The differentiation of expression (2.23·) 

ally, after reducing, 

relation, valid for small flow variations: 

giving 0< leads finally, after reducing, to the following 
w 

°** u ­ ­ J u/u
 =

 ^ Γ5*ΰ 1 (5«2.) M d M/M 1 +* " A_' 

m being given by (5·1>). 

5«2« The reactor power varies like the flow 

At equilibrium, At is unchanged; the drop 
(T„ - T_) varies like the power; the drop (T_ - T„) is unchanged 

U la G C 
if the heat transfer coefficient varies directly as the flow; the 
same expression is found for dl , the stability limit not being 

s 
related to the power. 
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Finally, we obtain the following relation 

giving the relative variation of the power coefficient for small 

variations of flow: 

. , , . ­*\ι ( 1 ­ m) 
d « /©< jr- s 

Λ / W W P < C /- , \ 

* MV
=
 - d M/M

 =
 — ΖΞ~;

 ( 5
'

3
·

) 

1 ♦ o< c ls 

For the initial core of the 250 MVe prototype, 

to a decrease in flow of 10% corresponds a relative variation of 

PCU a n d ^ , of about 2.5%. For the equilibrium core, to a 
π MW 

decrease in flow of 10% corresponds a double value for the power 

coefficient. 

5»3« Discussion 

X „ and oC have been plotted in Fig. 17 in 
M MW 

the logarithmic plan of the temperature coefficients for a 

negative decrement dM of flow. 

­ If the reactor is unstable: 

The plot shows that&/„ and K\_. ... 

* *̂ M MV are positive: 

d
K w / o ¿ w is then positive like d6^ since o^w is positive in the 

unstable zone: the new value of the power coefficient, has then 

the same sign and a greater absolute value; the reactor instability 

can only increase in the event of a flow decrement, and this the 

more the nearer the running point in the temperature coefficient 

plan is located to the stability limit. 

­ If the reactor is stable: 

Let us consider the case where "¿L, and " C . 

are negative, then d o<w is positive s i n c e ^ is negative in the 

stable zone: o^„ ahd do^„ having inversed signs, the reactor 

stability decreases and even, if the absolute value of d*»¿. 

becomes superior to that of οζ , the reactor initially stable can 

become unstable; in reality, this can happen only if the reactor 

stability is very weak; indeed, to obtain doC./oC = ♦ 1 

corresponding to a flow decrement of 10% for example, it is 
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necessary to takeo¿,
 o r &<

MW
 =
 " *°

 a n d
 **

 c a n b e s e e n
 *

n
 Fig. 17 

that the running point is located very near to the stability 

limit. 

In the case where «¿. is positive, the reactor 

M 

stability increases weakly in the event of flow decrement, but 

this variation is not significant. 

Ve can conclude that, generally, a flow 

decrement makes the reactor more unstable or less stable that 

the simultaneous effect of the power is not significant and 

that it is always of interest to take a couple of temperature 

coefficients not too closely situated to the stability limit. 

6. CONCLUSIONS 

In the following, we give the main results 

obtained in this study. The stability condition of the reactor 

is given by: 

­°<c
/ o
<u<

1
s 

where lg = ­j . ­j­j ♦ 1 

Τ and Τ are the averaged temperatures of fuel and coolant in 

the representative channel; a good approximation is to take Τ 

and Τ as averaged temperatures of the averaged channel. ΔΤ is 

the coolant temperature span. The axial neutron flux is a cosine 

flux. 

The reactor power coefficient is: 

o( = 10'
2
 . 4

1
 < * ♦ o< 1 > w 2 c u s 

withoc' in pcm/% when οζ and oC are in pcm/°C; in the temperature 
w c u 

coefficients plan, K' is constant on any parallel to the stability 

limit diven by ­ o< /οζ = 1 
C ' I I · at « 
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A proportional term R in the control system 
is necessary to stabilize the unstable core. R must be adjusted 
in order to obtain for the reactor a negative power coefficient 
of desired values so that: 

w 

R =„/ -οι' 1 - ̂ w w 

The inertia time constant of the bar is not 
a sensitive parameter for stability point of view. Usually, the 
thermal time constant of the fuel rod has not a significant 
influence on the inertia time constant of the control rod. 

Vhen the proportional term and the time constant 
ted, an integral term 1 

back the power level to its initial value. 
of the bar are adjusted, an integral term R is necessary to lead 

2 

In the case of the 100 and the 250 MVe studied 
prototypes, an optimum value for the ratio R0/R„ is about l/lO. 

2 1 

A differentiel term is without interest for 
stability point of view. 

In case of control loss with a simultaneous 
injection of reactivity, the power of the unstable core after 
a time of about one second increases exponentially with a time 
constant varying inversely as the power coefficient. 

A reduction of the coolant flow makes the 
reactorvstable or more unstable. 
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APPENDIX Β 

D Y N O R 

A numerical program for the DYNamic simulation of an ORGEL power plant 

1. INTRODUCTION 

The DYNOR code was made with the intention to investigate 
the behavior of an ORGEL power station under a great variety of 
circumstances, such as: 

variation of power level; 
reactivity, temperature or coolant flow disturbances; 
different temperature coefficients; 
different regulator arrangements; 

- different arrangements of the heat exchanger; 
etc. 

For this reason, the DYNOR code was written using the 
more general simulation program SAHYB 2 (Ref. 2), which accepts 
the problem description in a language close to the mathematical 
formulae, and handles integration and input-output in a standard 
way. 

As a consequence. DYNOR is made of 10 subroutines, which 
are called by SAHYB-2. Changes in the formulation corresponding 
to the required investigations are done modifying some of these 
routines which contain substantially the physical formulae. 

The description which follows will thus refer to a 
standard version of DYNOR that will be modified according to the 
investigation needed. The standard DYNOR, given in Appendix II, 
computes the dynamical evolution towards a steady state. 
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2. GENERAL ORGANIZATION OF DYNOR 

The block diagram of the power station is given in 
Fig. B-l; as in all programs using an integration routine, the 
integrated variables are expressed in vector notation X or X(I) 
The correspondence between the X(l) and the physical variables 
is given in the following sections and is resumed in Fig. 1. 
In all subroutines, the derivatives are noted DX(I) and time 
is noted T. A differential equation is thus noted: 

DX(I) = expression 

The correspondence between physical parts of the system and 
the subroutines of DYNOR is also given in Fig. 1. 

The reader should note the exact correspondence between 
Fig. 3*1. and Fig. 1.21a. The finite differences partition of 
the heat exchanger is identical to the one described in 1.3« 

3. THE SUBROUTINE PER 

This subroutine contains the description of the reactor 
and of the primary loop, including the wall equations of the 
heat exchanger. 

DER only is called by the program SAHYB-2, and all other 
routines of DYNOR are called by DER, directly or indirectly. 

The arguments of DER are: 

T the time (independent variable) 
X the integrated vector 
DX the vector of the derivatives 
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PAR a parameter vector, not utilized here* 

The first part of DER, up to the statement 200 CONTINUE, 
is executed only once, and contains the physical parameters** 
and intermediate computations. 

The equations following statement number 200 are equations*** 
(1.1.),(1.2.),(1.8.),(1.9·), (1.10.), (1.27.) for the reactor, and 
(I.29.), (1.30.) for the heat exchanger. 

Equation (l.l.) has been approximated by a sequence of 
equilibrium states, assuming the derivative always equal to zero. 
This is necessary to ensure numerical stability with reasonable 
long integration steps, since this equation has very fast time 
constants. 

The subroutine DER calls subroutines VARIAT, SECOND, REGUL, 
to be explained later. 

The functions DELAY and SIGMAP are standard SAHYB-2 
functions, performing respectively delay simulation and multiple 
summation (see SAHYB-2 operating manual). 

The use of indices for the vectors X and DX can clarly 
be understood examining Fig. B-l. 

PAR is a vector of parameters (maximum 100) that can be read in 
the input data (see section 9). It has not been used in the 
standard DYNOR because the parameters are too numerous, and the 
input data deck must be kept reasonably short. Now suppose e.g. 
that a certain number of computations is wanted varying temperature 
coefficients AU and AC. The use of DYNOR should then compile 
subroutine DER replacing instructions n°510 and 520 (of Appendix II) 
by the following: AU=PAR(l), AC=PAR(2) and then read PAR(l) and 
PAR(2) in the input data as explained in section 9« 
The meaning of symbols is given in Appendix I. 
All equation numbers refer to paragraph 1. 
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4. THE SUBROUTINE REGUL 

This subroutine is called by DER, and contains the 
description of the regulator, as described in section 1.4. The 
first section introduces parameters, and after statement number 
100 are described equations (1.43·) and (1.44.). 

If different control systems need to be tested with 
the power plant, a new REGUL subroutine may be introduced in 
DYNOR. 

The arguments are the same as for DER. 

The function COMPAR is a standard SAHYB-2 function* 
which introduces the non-linearities (limitations of speed and 
displacement). COMPAR is used here in a similar way as a 
comparator in an analogue set-up. 

5. THE SUBROUTINE SECOND 

This routine is called by DER, and contains the equations 
of the secondary side of the heat exchanger, except the super -
heater equations, which are in subroutine SUPHTR, called by 
SECOND. 

As in DER and REGUL, the first section, up to statement 
number 300, contains the parameter definitions and preliminary 
computations which are executed only once» 

The equations are those given in Figs. 1.8. and 1.10. 
and Eqs. (1.33·), (1.34.), (I.36.), (ΐ·37·), (1·39·), (l.40.) 
and (1.41.). 

C0MPAR(A,i) is equal to 1 when A is positive, and zero for A 
negative; when the transition from one state to another occurs, 
this is indicated in the output, and COMPAR resets the starting 
procedure of the integration routine, avoiding the errors due 
to the discontinuity. 
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The economizer equations (Fig. 1.8.) are solved for their 
equilibrium state, assuming the derivative always equal to zero, 
in order to ensure numerical stability with a reasonable long 
integration step (as for Eq. 1.1.). 

The approximation given in section 1.3« for the thermo-
dynamical functions (saturation temperature, enthalpies and 
specific volume) are linked with the scaling range of the 
analogue computation; in DYNOR, these functions have been 
evaluated by accurate formulae (see section 8). 

The subroutine SECOND calls also subroutine RECORD, 
which is a control on input-output operation. The arguments 
of second are the same as in DER. 

6. THE SUBROUTINE SUPHTR 

This subroutine is called by SECOND. It solves the 
energy conservation equations for the superheater (Fig. 1.18.) 
as a sequence of equilibrium states (to ensure numerical 
stability). The equations are solved for the enthalpy of 
superheated steam H(J) by iterations; this requires the 
evaluation of the steam temperature, which is function of 
pressure and enthalpy. 

The evaluation of temperature by accurate formulae would 
require long computer times; the temperature function is there­
fore stored in tables for a wide range of pressures and enthalpies, 
and is read by the function FTVOV (which is a standard SAHYB-2 
function) which uses linear interpolation (see section 10 and 
appendix IV). The accuracy of this procedure is maintained 
within a one percent; if, by any chance, the computed 
temperature goes outside the stored range, computation is 
stopped and a diagnostic is given by SAHYB-2. 
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7. THE SUBRØUTINE RECORD 

This subroutine is called by SECOND (which is called by 

DER) and contains the standard SAHYB-2 statements for read-out; 

they have been grouped here in order to allow a change of the 

output without modifying or recompiling the other DYNOR sub -

programs. 

The subroutines that may be called by RECORD to print out 

results are: 

CALL 0UTPUT (arg 1, arg 2, ...) 

This subroutine enables to print out, either the complete 

integrated vector and the derivatives, or some of them. 

Specified labels (given in the input data) are printed out near 

the results. The arguments are integers, and are the indexes 

of components which must be printed out β 

CALL WRITE ( a ^ ± J arg^, ... arg. ±t arg. = t ...) 

This subroutine prints out variables other than the 

integrated vector components. These variables must appear at 

least once in a left-hand side term in the subroutine DER. They 

are printed out for the same interval as in OUTPUT. The number 

of arguments is variable with a minimum of two; they are always 

in pairs, the first one specifying the label, the second one 

the variable name. 

arg is a Hollerith field of a maximum of 6 characters, which 

specify the label that should be printed near the 

variable; 

arg._ is a name of a variable which must be printed out. 

In addition, plots may be obtained on the CALCOMP, 

calling in RECORD the following subroutines: 
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CALL DRAW ( a ^ χί arg^, arg. χ | arg. flt ...) 

plots the results as a function of the independent 
variable T. The arguments have the same arrangement as for 
WRITE. The subroutine DRAW may be called repeatedly, with 
different arguments. For each CALL, the curves relative to the 
arguments will be drawn on the same plot. 

CALL DRAWXY (argxχΔ arg^, ... arg. ±Δ arg.g) 

plots the results in a phase plane, taking as abscissa 
the first variable (first two arguments) and as ordinate the 
successive. The routine may be called repeatedly to obtain 
different plots in a similar way as DRAW. 

For further details on the output procedures, the reader 
should refer to the SAHYB-2 operating manual. When writing a 
new RECORD to change the output, care should be taken to see 
that the variables to be recorded appear in one of the COMMONS. 

7. THE SUBROUTINE VARIAT 

As it has been illustrated to this point, DYNOR contains 
a system of differential equations describing the power station; 
integration would, if carried on a sufficient time, lead to the 
steady state at nominal power. As the purpose of DYNOR is to 
allow transient computation under a variety of circumstances, 
the SUBROUTINE VARIAT has been introduced as an easy way to 
insert variations (or disturbances) without modifying and 
recompiling th other DYNOR subroutines. As given in appendix 
II, VARIAT is a dummy and has no influence. A comment indicates 
which are the variables that may be programmed in VARIAT: 
disturbances in reactivity, temperature or flow; variation of 
power demand, variation on the regulation programs for pressure 
and temperatures when the power is changed. Since all these 
inputs have frequently the shape of a step, a pulse or a ramp? 
SAHYB-2 provides, as a standard feature, the three following 

functions: 
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STEP (Τ) 

PULSE (Τ) 

RAMP (Tl, T2) 

simulating respectively a step of unit amplitude, a pulse of 

unit surface occurring at time T, or a ramp of unity rate 

(l unit/second) between times Tl and T2. The synchronisation 

of the discontinuity with the integration routine is automatically 

ensured. 

For example, a 100 pem reactivity occurring at time = 

5 sec. would need this instruction in VARIAT: 

CTØ = 1. + 100.E - 5* (STEP (5)) 

A temperature disturbance of 5°C/sec. during 2 seconds 

in the inlet temperature of the heat exchanger would be simulated 

by: 

TF = 190. + 5·* (RAMP (0.,2.)) 

As another example, consider a power demand variation 

following the regulation program given in 1.4.3· and Figs. 1.22. 

and 1.23.* 

The required instructions for VARIAT would be: 

PØWVAR = 1. - O.OOO8333* (RAMP(0.,900.)) 

TAVZ = 318. - 0.02222* (RAMP(300.,900.)) 

When using VARIAT, it must obviously be verified that 

the variable to be changed is in the common. 

Power demand from 100% to 25% in 15 minutes (900 seconds) varying 

thus of 5% a minute (O.0008333/second). The average temperature 

must remain constant from 100% to 75% of full power (thus during 

3OO seconds), and then decrease of 20° in the next 10 minutes 

(0.02222°C/second). 
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8. SUBPROGRAMS FOR EVALUATING THERMODYNAMIC QUANTITIES 

The functions utilized by DYNOR are: 

FUNCTION TLSAT(P) gives the temperature of saturation, in 
degrees Centigrades, if Ρ is the pressure 
in kg/cm2; 

FUNCTION VSVAP (Ρ,ΤΕΜΡ) gives the specific volume of steam, in 
m3/kg, if Ρ is the pressure in kg/cm2 
and TEMP is the temperature in degrees 
Centigrades; 

FUNCTION EVSAT (TSAT) gives the enthalpy of saturated steam, 
in Kcal/kg, if TSAT is the saturation 
temperature in degrees Centigrades; 

FUNCTION ELSAT (TSAT) gives the enthalpy of water at saturation, 
in Kcal/kg, if TSAT is the saturation 
temperature in degrees Centigrades. 

These functions are called by SUBROUTINE SECOND. 

9. INTEGRATION SUBROUTINES 

These are the standard routines used by SAHYB-2. 

Three options may be used, which give comparable 
results: (the choice of the desired option is made through the 
input data, see § 10). 

Option 4:fixed step 4th order RUNGE-KUTTA integration. Use a 
time step of about 0.1 second. 

Option 1:fixed step predictor-corrector integration. Use a 
time step of about 0.1 second. 
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Option 2: variable step predictor corrector. The following 
characteristics should give a reasonable compromise 
between accuracy and speed: 

MAXIMUM ERROR 10"5 

MINIMUM TIME STEP 10"3 sec. 
MAXIMUM TIME STEP IO2 sec. 
VARIATION FACTOR 0.5 
LIMIT BETWEEN ABS. AND RELATIVE ERROR 100 
LOWER BOUND TO ERROR 50 

Generally, the variable step option will be preferred· 

10. INPUT DATA 

These follow the standard arrangement for SAHYB-2, 
adapted to the particular case of DYNOR. 

The first card is a comment intended to identify the 
problem; the first 15 letters of this comment are written on 
the CALCOMP plots for identification. On the following, there 
is one numerical information per card: columns 1 to 40 may be 
used for any comment to be reproduced on the output listing 
(usually the meaning of that particular datum). The numerical 
information is contained in column 4l to 50, in fixed or floating­
point notation*. 

The data cards are, in order: 

1) identification and comments; 
2) number of differential equations N (fixed point) N = 31 

for the standard DYNOR, but may be modified if equations 
are added; 

For fixed point, the reading format is: I 10. For floating 
point, the reading format is: E 10.6. Thus, for fixed point, 
the unities should be in column 50; for floating, if the 
decimal point is explicit, the number may be written in any 
desired way in columns 4l to 47; column 48 contains eventually 
the sign of the exponent of 10, columns 49 and 50 this exponent. 
Blanks are taken as zeroes. 
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3) number of parameters PAR; equal zero, if PAR is not used* 

4) number of tables to be read in input: N = 7 for the 
standard DYNOR; 

5) final time for integration (floating); 

6) initial or constant integration step (floating); a value 
around 0.1 is convenient; 

7) time step for output (floating); 

8) integration option (see section 9); the numerical 
information in column 50 should be: 
1 for fixed step predictor-corrector 
2 for variable step predictor-corrector 
3 for variable step predictor-corrector using standard 

error characteristics** 
4 for 4th order Runge-Kutta integration 

9, l) initial condition for X(l) in floating; the first six -
characters of the comment are taken as label on the 
standard output ; 

9, n) initial condition for X(n); 

10-i) PAR(i) value, with the same format of initial conditions 
(only if datum 3 is different than zero)*** 

Then the following cards (11 to 16) must be placed only when 
integration option is 2 on datum n.8. 

* Datum 3 would be equal to 2 for the case given in footnote of 
section 3* 

** These are: maximum error: 10 
minimum time step: 10 
maximum time step: 100 
variation factor: 0.5 
level below which the absolute error is considered: 1 
error factor for which a longer step length is taken: 100 

*** The numerical values for AU and AC would be introduced in data 10-1 
and 10-2 for the case given in footnote of section 3 
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11) maximum relative error (floating); 

12) minimum time step (floating); 

13) maximum time step (floating); 

14) variation factor (floating); 

15) level below which the absolute error is considered for 
step variation (floating); 

16) error factor, specifying a lower bound for which a 
longer step length is taken (floating); 

17) number of points in table 1 ( 100, fixed point); 

18-1) the following cards contain the abscissae and ordinates 
of table one: six numbers, per card; respectively 
X l ' yi' X 2 ' y 2 ' X 3 ' y3 ° n t h e f i r s t c a r di e t c· Each 
number is expressed in floating and uses 10 columns. 
Thus columns 1 to 60 are used on these cards. 

19) number of points in table 2 (fixed point) 

20) abscissae and ordinates of table two 
etc. 

And so on for the desired number of tables. The last 
card must always contain END in the first three columns. If 
the data need to be changed, follow the SAHYB-2 operating manual 

The tables referred to in data 4, 17, l8, 19 etc. are 
the values of temperature of superheated steam versus enthalpy, 
for several values of pressure: 

Table 1 corresponds to 40 kg/cm2 
π 

M 

Π 

II 

II 

II 

2 ' 

3 ' 
4 ' 

5 ' 
6 ' 

7 ' 

' 60 
• 80 
• 100 
• 130 
• 160 
» 200 

M 

II 

II 

II 

II 

II 

These tables are given in appendix 4; they limit the 
validity domain of the program (see section 5); an example of 
data deck is given in appendix 3· 
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APPENDIX I 

Definition of symbols 

SUBROUTINE DER 

{ 

Í 

X(l) = TU 

X(2) = TG 

X(3) = TC 

X(4) to X(9) 

X(12) = TORG 1 

to 

X(19) = TORG 8 

X(20) = TWALL 1 

to 

X(27) = TWALL 8 

PNTR 

CT 

UU, UÀ, UC 

AA, BBB 

CC 

GU, GC 

BETA 

VL 

B(i) 

AU = « 

= -e 

AC β 0< 

temperature of uranium 

temperature of cladding 

temperature of coolant 

delayed neutrons (6 groups) 

organic temperatures in the primary of the 

heat exchanger 

(eight zones, frorr the hot to the cold end) 

wall temperatures in 

the heat exchanger 

neutron power 

total reactivity 

heat capacity per unit of volume of 

uranium, cladding and coolant 

heat transfer coefficients uranium­cladding 

and cladding­coolant 

transport coefficient 

are Υ , Y defined by (2.25·) and (2.22.) 

delayed neutrons fraction 

neutron lifetime 

uranium temperature coefficient 

coolant temperature coefficient 

SUBROUTINE REGUL 

ERROR 

X(10) 

X(ll) 

TAV 

TAVZ 

PNOM 

R4 

R5 

INTE 

ROCON 

actuating error signal 

integrated error 

control rods reactivity 

average temperature of organic 

reference average temperature 

nominal power 

gain of integrated feedback 

gain of proportional feedback 
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AINERT 
SPEED 
SPDLI 
UPLI 

DOWNLI 

inverse of inertia time constant 
reactivity speed of control rods 
speed limit for control rods 
upper limit for reactivity (mechanical stop of 
control rod) 
lower limit 

SUBROUTINES SECOND and SUPHTR 

TSEC(i) 

X(28) - = Ρ 
X(29= RO 
X(30) = XX 
X(3l) = IDOW 
H(i) 

I 
ISAT 
ILIQ 
TSAT 
WREQ 
WR 
WC 
VS 
ROSAT 
VSPEC 
POWER 
POWVAR 
ROLVE 
CLVE 
TF 
VLIQ 
ROD 
TAU 1, TAU 2 
WOL 
WOLVAR 
TOUT 
TIN 

temperature in the secondary (eight zones, from 
hot to cold) 
steam pressure 
steam density in the boiler 
steam quality in the boiler 
enthalpy in the downcomer 
enthalpy in the superheater (three zones, from hot 
to cold) 
enthalpy in the boiler 
enthalpy of saturated steam 
enthalpy of saturated water 
temperature of saturation 
mass flow in the secondary 
mass flow in the riser 
condensation flow 
specific volume of liquid 
density of saturated steam 
specific volume of steam 
nominal power demand 
variation factor for power demand 
density of water in the economizer 
specific heat of water in the economizer 
inlet temperature in the economizer 
specific volume of water 
density in the downcomer 
time delays between reactor and heat exchanger 
organic mass flow 
mass flow variation factor 
outlet temperature of the reactor 
inlet temperature of the reactor 
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TOL 
TOUT EC 
ALTZE, B, S 
VLORE, B, S 
VLTUE, B, S 
SPORE, B, S 
SPVAE, B, S 
V 
LR, LD 
VLDO 
HLOE, B, S 

HLVE, B, S 

ROLOE, B, S 

ROPE, B, S 
CLOE, B, S 

CPE, B, S 

inlet temperature of the primary 
oulet temperature of the primary 

height of the economizer, boiler and superheater 
volume, organic 
volume, tubes 
surface, organic side 
surface, secondary side 
volume upper dome 
height of riser and downcomer 
volume downcomer 
heat transfer coefficient organic side for economizer, 
boiler, superheater 
heat transfer coefficient secondary side for 
economizer, boiler, superheater 
density of organic for economizer, boiler, super -
heater 
density of wall for economizer, boiler, superheater 
specific heat of organic for economizer, boiler, 
superheater 
specific heat of wall for economizer, boiler, 
superheater 
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APPENDIX II 

Program and deck arrangement 

DYNOR may be used with the FORTRAN-4 709O or FORTRAN-360 monitor, 
in the following arrangement: 

1) DYNOR CARDS 

2) SAHYB-2 CARDS 

3) DATA CARDS 

The DYNOR programs for the 7090 and the 36O/6O will practically 
be identical. 

The SAHYB-2 decks are different. 

The standard DYNOR is given in the following pages only to 
facilitate understanding; as in all digital programs changes 
or corrections could be introduced after publication of the 
present report. 



SAHYe2 CER 

EXTERNAL FORMULA NUMBER ;0URCE STATEMENT 
o^/n/67 

INTERNAL FORMULA NUMBER«S) 

C 
C 
C 
C 

C 
C 
C 

SUBROUTINE 
COMMCN/VAR 
COMMCN/SEC 

DER(T,X,DX,PAR) 

1TOL,TIN.TSAT,POWER 
COMMCN/SECPAR/PLVÜ, 

IJCI\ I I » Λ » 1 > Λ » Γ Η Ι \ Ι 

VAR/TF,CTO,POWVAR,WOLVAR,PNVAR,DERROR 
V A R / T S E C m . P N T R , ERROR, REG, TAV, CT, TOU 

,TAV2 
TOUT, 

.PLVB,PLVS,ULVE,HLVB,HLVS,LECO,ALVE,ALVB.ALVS, 
1,AR,LSUR,LEVA.V,LD,LR,VLD0 
61 ME NS I ON Χ Π CC),DX(100),PAR(100) 
DIMENSION Cl ( 8 ) ,C2( Β ) , C M 8 ) , Dl ( Π ), D2 ( fi) , Π? ( 8 ) , VLA (9), Rl 9) 
DIMENSION ROSECÍ3) 
REAL LSUR,LEVA,LECO,LR,LD 
LOGICAL SWITCH 
IF (SWITCH 1) ) GO TO 20"> 

PARAMETERS 

REACTOR 

UU«3 
UA = 1 
UC = 1 
AA=1 
BHB= 
CC = 1 
Al 1 = 
A12= 
A32= 
A31 = 
A22= 
A21» 
GU=U 
G 0 1 
CTO= 
BETA» 
BB=1« 
VL=5« 
VLA(1 
VLA( ! 
VLA(< 
VLAC 
VLA( ! 
VLA( < 
B k)-
Β 5) = 
B(6) = 
B ( 7 ) : 
B(8) = 
B(9) 
DTUO = 
DTCO = 
TEMPI 
AU»-< 
AC»*! 

olEU 
• 5EU 
.9EU 
«EU 
14,5E1* 
,6EU 
Ce95/UU 
CC/UL 
2o»flRB/UC 
AA/LC 
AA/UA 

CC/UA 
o/3o 

,3955 
A 

·.)·., m 
ih 

ci 
,*ςι 
111 
0 30 S 
oC12M 

;160/VL 
W21/VL 

li+??2/VL 
:792/VL 
Í96/VL 
t ' l í l / V L 

:RE 
:-5 
:_ c 

CCETF FOR IRRADIATED CAS:! 

DYN00010 DVN0Õ020 DYN00030 DYNOQû^O ADDYN0005Û DYN00060 DYN00070 DYNOOD80 DYN00090 DYNOO' DYNOO' DYNOO' DYNQQ1 DYNOO HO DYN001 DYNOO DYNOO DYNOO DYNOO 

*§ 
50 
60 
70 
80 
90 

DELAY LINES 

DYN00200 
DYN00210 
DYN00220 
DYN00230 
DYN002U0 
DYN0Q250 
DYN0Õ260 
DYN00270 
DYN00280 
DYN00290 
DYN00300 
DYNC0310 
DYN0032Q 
DYN00330 
DYN003U0 
DYN00350 
DYN00360 
DYN00370 
DYNÕÕ38Ò 
DYNÖ0390 
DYNÕÕUÓO 
DYN00U10 
DYNOÕU20 
DYN0ÖU3Ö 
DYNOOUUO 
DYNÕ0U50 
DYN00460 
DYN00U70 
DYN00U90 
DYN00490 
DYN00500 
DYNÕ0510 
DYNO0520 
DYN00530 
DYN0U5U0 
DYN005S0 

t i 

i! 
! 

•I 
'Al 
:1 
'M 
, 1 9 
, 2 0 
, 2 1 
, 2 2 •r 
, 2 6 
, 2 7 
t 2 3 

'M 
úi 
,3U 
, 3 5 
, 3 6 

37 

, 2 , 3 

ro 
UI 



SAIIYB2 CER 04/11/67 

EXTERNAL FORMULA NUMBER - SOURCE STATEMENT - INTERNAL FORMULA NUMBER(S) 

TAUl=12o25 DYN00560 ,38 
STl=2o DYN00570 ,39 
TAU2=13U DYN00580 ,40 
ST2=2o DYN00590 ,U1 
T0UTEC=266„C0 DYN00600 ,42 
TIN=TCUTEC DYN00610 ,43 
T0UT=2o»X(3)-TIN DYN00620 ,44 
TOL=TOUT DYN00630 

Ç DYN00640 

C GEOMETRIC PARAMETERS DYN00650 
C »»»#·*»»»#··*#»*»**«»»**»*#»***#«»#*#**·»·»»###»#»»»«*##»»#####»##[)γΜ00ο60 
C ALTZE,B,S = HEIGT OF ECONOMI SER,BOI LER AND SUPERHEATER DYNÖ0670 
C VLORF,B,S=VOLUME »ORGANIC DYN00680 
C VL

T
UE,R,S=VOLUMe , TUBES DYN00690 

C SPORE,H,S=SURFACLfORGANIC SIDE DYN00700 
C SPVAE,Β,S=SURFACE,SECONDARY SIDE DYN00710 
C V = VOLUME UPPER DOME DYN0O720 
C LR,LO = HEIGHT OF R I SER,DOWNCOMER DYN00730 
C VLDO = VOLUME OOWNCOMER DYNÜQ74G 
C »###»###»*#»»»«·#»**###»*###»#######*»#♦#»*»»#»#»####» »*»»»»*»»*»»OY^00750 ,45 

ALTZE = 2o725 DYN00760 ,46 
ALTZR = 7o22 DYN00770 ,47 
ALTZS = 2oC5 DYN00780 ,48 
VLORE = lo~4 DYN00790 ,49 
VLORE = 4o3 DYN00800 ,50 ^ 
VLOR S = U 7 2 DYN00810 ,51 ^ 
VLTUE = Co C 3 DYN00820 ,52 
VLTUB = 4o44 DYN00830 ,53 
VLTUS = Co 15 DYN00840 ,5U 
VLVAE = ΟβΟΠ DYN00850 ,55 
VLVAB = β o 2 rl DYNOO 860 ,56 
VLVAS = Co 3 DYN00870 ,57 
SPORE = 419c DYN00K80 ,58 
SPORB = 1801o DYN00890 ,59 
SPORS = 636o DYN00900 ,60 
SPVAE = 295o DYN0Q91Ç ,61 
SPVAB = 1519o DYN00920 ,62 
SPVAS = 519c DYN00930 ,63 
V= 6, DYNOO^.40 ,64 
LR=7o22 DYN00950 ,65 
LD=7e22 DYN00960 ,66 
VLD0= 4 0 DYN00970 

C DYNQ0980 
C GEOMETRIC DEFINITIONS DYNÕQ99Q 
C DYNÒÌ00O ,67 

ALOE = VLORE / ALTZE DYN01010 ,68 
ALOB = VLORB / ALTZB DYN01020 ,69 
ALOS = VLORS / ALTZS DYN01030 ,70 
APE = VLTUE / ALTZE DYN01040 ,71 
APB = VLTUB / ALT7.B DYN01C50 ,72 
APS = VLTUS / ALTZS DYN01060 ,73 
ALVE * VLVAE / ALTZE DYN01070 ,74 
ALVB » VLVAR / ALTZB DYN01080 ,75 
ALVS = VLVAS / ALTZS DYN01090 ,76 
LECO = ALTZE / 2o DYN01100 ,77 
LEVA = ALTZB / 3o . . . DYN01110 ,78 . 4 

r>j 



C C 
c 

c c c 
c c c c c 

c 

SAHYB2 CER 
EXTERNAL FORMULA 

LSUR = ALTZS / 3c 
PLOE = SPORE /ALTZE PLOB = SPORR /ALTZB PLOS = SPORS /ALTZS PLVE = SPVAE /ALTZE PLVB = SPVAB /ALT7.B PLVS * SPVAS /ALTZS AD=VLDO/LR AR=VLVAS/LR 
THERMAL ANC HYDRAULIC 
HLOE« 0o696 
HLOB= OoéCl HLOS= 0o46C HLVE» 5o461 HLVB= 3o561 HLVS= C3593 R0L0E=898e R0L0B=372o ROLOS=322o ROPE=786C0 R0PB=786Co ROPS=7e6Co CLOE=.544526 CLOB=e5722C" CL0S=o60C9C" CPE=0ol2 CPB=Ce12 
CPS=0el2 
ORGANIC FLOW 
WOL =722o8 WOLVAR=loO 

INTERMEDIATE VALUES 
ORGANIC SIDE 

C>1=ALOS»RCLOS»CLOS CS2=CL0S/LSUR»W0L CS3=I-LOS*PLOS CBl=ALC3«RCL0B«CL0B CB2=CLOB/LEVA»WOL CB3=HLOB«PLOB CEÏ=ALOE*RCLOE»CLOE CE2=CLOE/LECO#WOL CE3=HLOE*PLOE WALL DS1=APS*ROPS»CPS DS2»rLOS*PLOS 
DS3=HLVS«PLVS DBl=APB»ROPR»CPB DB2=HLOB»PLOB DB3=rLVB»PLVB 

NUMBER 

PARAME 

SOURCE STATEMENT 34/11/67 INTERNAL FORMULA NUMBER!S 1 
DYNO 1 
DYNO' DYNQ1 DYNO 
DYNO' DYNO DYN01 DYNO DYNO DYNO DYNO DYNQ DYNO 
DYNO DYNO DYNO DYNO DYNO DYNO' DYNO DYNO DYNO DYNO' DYNO DYNO DYNO DYNO DYNO DYNO DYNO DYNO DYNO DYNO DYNO DYNO DYNO 
DYNO DYNO DYNO DYNO DYNO DYNO DYNO DYNO DYNO DYNO 

120 130 140 150 
160 170 180 190 200 210 220 iii 
250 260 270 280 29Û 300 310 320 330 340 350 360 370 330 390 400 
410 420 U30 440 450 460 470 480 490 50C 510 520 530 540 550 560 570 DYNO1530 DYN01590 DYNO1600 DYNO DYNO DYNO DYNO DYNO DYNO DYNO 

610 620 630 640 650 660 670 

,79 ,80 
:Si ,83 ,34 ,35 ,36 

ΆΙ 
,B<> 

: « .92 ,93 ,94 ,95 ,96 ,97 ,98 ,99 , 100 ,101 ,102 ,103 
,104 

,105 ,106 

, 107 , 1υ8 ,109 
:1W ,112 ,113 
'MÌ 
,116 ,117 ,118 
,119 ,12C ,121 122 

Ul 



SAHYB2 CER 

EXTERNAL FORMULA NUM8E
r 

SOURCE STATEMENT 
04/11/67 

INTERNAL FORMULA NUMBER(S) 

C 
C 
C 
C 

C 
C 
C 
C 
c 
c 
c 

c 
c 
c 

c 
c 
c 

c 
c 

100 

110 

120 

DE1=APE*R0PE»CPE 
DEZ=HLOE«PLOE 
DE3=HLVE«PLVE 

TOTAL THERMAL COEFFICIENTS 

SUPERH 
DO 100 
C2U)»C 
C3(J)=C 
DIU )=D 
D2(J)=( 
D3(J)=D 
CONTINU 
BOILER 

DO 110 
C2(J)=C 
C3 J)=C 
D1ÍJ)=D 
D2IJ)=( 
D3(J)=D 
CONTINU 
ECONOM 

DO 120 
C2(J)=+ 
C3(J)=C 
D1(J)=D 
D2(J)=( 
D3(J)=D 
CONTINU 

EATEP. 

J = 1,3 
S2/CS1 
S3/CS1 
S2/DS1 
-CS2-DS3)/DS1 
S3/DS1 
E 

J = 4,6 
B2/CB1 
B3/CR1 
B2/CB1 
-CB2-DB3)/DB1 
B3/DB1 
E 
ISER 
J=7,3 
CE2/CE1 
F3/CE1 
E2/CE1 
-CE2-DE3)/DE1 
C3/CE1 
E 

EQUATIONS ν»*»·····*····»·*«···· 

2 0 0 CONTINUE 
C A L L V A R I Â T 

CALL SECCNC(T,X,DX,PAR) 

DELAY LINES 

TIN=DELAY( 9,TAU2/WOLVAR, SΤΓ.,ΥΛ 19) ) 

T0UT=2o»X(3)-ΤIN 

T0L=CELAY(lO.TAUl/WOLVAR,STI»TOUT) 

REACTOR KINETICS 

CT=CTO*AC»CC»(X(3)-nTC0)*AU*GC»(X(')-DTCO)+AU»GU»(X(1) 
1TC0) +X(11) 
TRET=SIGMAP(VLA,X,4,9) 
PNTR=-(TRET»VL) / (CT»RB-lo) 

REGULATOR EQUATIONS 
CALL REGLL(T,X,DX,PAR) 

DTUC-

DYN01 
DYNÛ1 
DYN01 
DYN01 
DYM01 
DYN01 
DYNO 
DYNO 
DYNO 
DYNO 
DYNO 
DYNO 
DYNO' 
DYN01 
DYNO' 
DYNO 
DYN01 
DYNO' 
DYNO 
DYNO 
DYNÜ' 
DYNO' 
DYNO 
DYNO 
DYNO 
DYNO 
DYNQ 
DYNO 
DYNO' 
DYNO' 
DYNO' 

680 
690 
700 
710 
720 
730 
740 
750 
760 
770 
780 
790 
80Ü 
810 
820 
830 
840 
850 
860 
870 
880 
890 
900 
910 
92 J 
930 
940 
950 
960 
970 
980 

DYN01990 
DYN02000 
DYN02C10 
DYN02020 

DYN02C40 
DYN02C50 
DYN02060 
DYNG2C70 
DYN02080 
DYN02090 
DYN02100 
DYN02110 
DYN02120 
DYN02130 
DYN02140 
DYN0215C 
DYN02160 

-X(3)+DDYNC2170 
DYN02180 
DYNC219Û 
DYN02200 
DYN02210 
DYN02220 
DYNO 2 Ϊ230 

,123 
, 124 

,125 
, 126 ,127 ,123 ,129 , 130 ,131 
,132 ,134 , 135 ,136 ,137 , 138 ,139 
, 140 , 142 , 143 , 144 ,145 , 146 , 147 

,148 
,15C , 151 

, 152 ,153 , 154 

, 155 
, 156 ,157 

, 158 

133 

141 

,149 



c 
c 
c 

c 
c 
c 
c 

c 
c 
c 
c 

c 
c 
c 

SAHYB2 CER 

EXTERNAL FORMULA NUMBER 

REACTOR THERMAL EQUATIONS 

SOURCE STATEMENT 

DXII )*A11»PNTR­A12»(XI 1 )­X<2) ) 
DXJ2l­A2]»(X(1)­XJ2))­A22»(X(2)­XI3))»WOLVAR 
DX(3)»A31»WOLVAR»(X(2>­X<3)>­A32«ÌX(3)­TIN ) 

DELAYED NEUTRONS 

B(I)«BETA(I)/VL 
DO 220 I«4,9 

220 DXII )»­X(I)»VLA{ I)*PNTR*CT·^ I) 

HEAT EXCHANGER ORGANIC SiEti 

DX(12)=(­Ç3(1)­C2(1)*W0LVAR)»X!12)*C2(1)·ΤΓL·W0LVAR+C3<1)·Χ(2Γ) DX(12]=(­Ç3(1)· 
DO 230 I«13,19 
J*I­11 
K­I + 8 

230 DXII)=(­C3(J)­C2(J)»WOLVAR)·Χ(Ι)*C2<J)»X(1­1)»W0LVAR+C3(J)»X(K) 

WALL EQUATION 

DO 240 1=20,27 
K=I­8 
J­I­19 

240 DX(I)=D1(J)»X(K)+D2<J)»X(I)+D3(J)»TSEC(J) 
RETURN 
END 

04/11/67 
INTERNAL FORMULA 

DYN022U0 
DYN02250 
DYN02260 
DYN0227Q 
DYN02280 
DYNÕ2290 
DYNÕ23ÓÕ 
DYNQ2310 
DYN 
DYN 
DYN 
DYN 
DYN 
DYN 
DYN 
DYNÕ239Õ 
DYN02400 
DYNÕ2UÍÕ 
DYN02U20 
DYNQ2430 
DYN02UU0 
DYN0245Q 
DYN0246Õ 
DYN02470 
DYN02U80 
DYN02U90 
DYN0250Q 
DYNQ2510 
DYNC25 20 
DYNC25 3C 

NUMBER!S) 

,159 
,160 
,161 

,162 
,163 

,161» 
,166 
,167 
,168 
,169 

,170 
,172 
,173 
,174 
,175 
,177 
,178 

,165 

.171 

,176 

ui 



c 

c c c 

c 

c c 
100 

110 * 
120 13C 

SAUYB2 RECUL 
EXTERNAL FORMULA NUMBER - S 

SUBROUTINE REGUL(Τ,X,DX,PAR) 
REGULATOR 
DIMENSION X(1 OC),DX{ICO),PAR(100) 

OURCE 

C0M'10N/VARVAR/TF,CT0,POWVAR,WOLVAR,PNVAP.,! C0MMCN/SECVAR/TSEC{8),PNTR,ERR0R,REG 1T0L,TIN,TSAT,PCWER LOGICAL SWITCH 
IFISWITCH3) ) CO TO 100 

REGULATOR PARAMETERS DERRCR=CoO PNVAR=1oC AINERT=2o ΡΝ0Ί=4ο·ΜΕ6 PNTR=PNOM 
TAVZ=318e00 PRESN=62o Rl=1o/PNCM R2=1o/TAVZ R3=Qo5/PRESN R4 = 1oE-2 
R5=2.5E-2 MECHANICAL LIMITS OF CONTROL RODS UPLI=20CoE-5 DOWNLI=-2CC->E-5 
SPDLI=15oE-5 CONTINUE EQUATIONS 
TAV=Co5»(T0L+X(19)) 
ERR0R=-R1»(PNTR-PN0M»PNVAR)-R2»< TAV-DX(1C)=R4*ERR0R REG=X(10>+R5»ERROR SPEEC=AINERT*(REG-X(11)) DSPEEC=ARS(SPEED)-SPOLI COMP10 = CCMPAR(CSPEED, 10) 
IF(S,PEED)11"t]20,12w 
SPEEC=SPECD»<1»-COMPIO)-SPDLI»COMP 10 GO TC 130 SPEEC=SPEED»(1e-C0MP10) + SPDLI»COMP 10 DX(11)=SPEED 
C0MP9 =CCMPAR(X(11J-UPLI.9) 
C0MP8 =CCMPAR(COWNLI-X(11),8) 
Xlll ) = X( 11 )*{ U-C0MP9 -COMPO )+UPLI» RETURN END 

,TAV,i 

TAVZ)· 

C0MP9 

STATEMENT 

DERROR,TAVZ CT,TOUT, 

-R3»(X(28)-PRES 

+D0WNLI»C0MP8 

04/11/67 
INTERNAL FORMULA 

DYN02550 DYN02560 DYND2570 
DYNC2580 DYN02590 DYN02600 DYN0261C DYN02620 DYNC2630 DYN02640 DYN0265Q DYN02660 
DYN02670 DYN02680 DYN02690 DYNÕ2700 DYN02710 DYN0271Î DYN02720 
DYN02730 DYN02731 DYN0274Q DYN02750 DYN02760 DYN02770 
DYN02780 DYN02790 DYNQ2800 DYN02810 DYN02820 DYN02830 

N)+DERR0R DYN02840 DYN02850 DYNÕ2860 DYN02870 
DYN02880 DYN02890 DYNQ-2900 DYNÕ2910 DYN02920 DYN02930 DYNQ294Q DYNÕ295Q 
DYN02960 DYN02970 DYN02980 DYN02990 

NUMBER(S) 

,1 , 4 ,5 ,6 ,7 ,8 ,9 10 ,11 ,12 ,13 ,14 
» I 5 
,16 
,17 .18 

.19 
,20 ,21 ,22 ,23 ,24 ,25 ,26 ,27 ,28 ,29 ,30 
•H ,33 .34 ,35 ,36 

, 2 , 3 

ro 



SAI IYB2 SECOND 

EXTERNAL FORMULA NUMBER SOURCE STATEMENT 
04/11/67 

INTERNAL FORMULA NUMBERÍS) 

C 
C 

SUBROUTINE SECOND(Τ,X.DX,PAR) 

EQUATIONS SECONDARY SIDE 

C 
C 
C 
C 
C 
C 

C 
C 
c 

COMMCN/VARVAR/TF,CT0,P0WVAR,WOLVAR,PNVAR,DERR0R,TAVZ 
C0MMCN/SUPHT/I,H(4).WRC0.G2 
COMMON/S ECVAR/TS EC(Ì),PNTR,ERROR,REG,TAV,CT,TOUT, 
1T0L,TIN,TSAT.POWER 
COMMON/SEC PAR/PLVE,PLVB,PLVS,ULVE,HLVB,ULV S,LECO,ALVE 
l.AR,LSUR,LEVA,V,LD,LR,VLDO 
COMMCN/RCCRD/WR,WC,VS,VSPEC,ISAT.ILIQ,ROSAT 
DIMENSION X( ICC. ) ,DX( 1Õ0 ), PARI Í0O) 
REAL I, ISAT,ILU,LEC0,LR,LD,K2,LSUR,HLVS 
LOGICAL SWITCH 
IF(SWITCH(2)) CO TO 300 

'PARAMETERS« 

MISCELLANEOUS PARAMETERS 

WCK=0«1 
WC»OoO 
WREQC=79e22 
AVS=C*:5874 
BVS=-0 ,42C9E-3 
P0WER=173o5C5FC6 
POWVAR=leC 
RR*15 . 
PZERC=X<32> 
VSO=AVS+BVS*PZERO 
K 2 = ( ( R R » W R E 3 0 ) * » 2 ) » ( V L I Q + V S O / ( R R + 1 o ) ) / t V S O / ( R R + 1 . Π 
ROLVE=75C. 
CLVE«1ol 
TF=19Q0 
CLVE=1.1 
BIPR0*103e 
A I » 4 6 1 , 3 4 
B I L » 1 . ] 9 4 
BLAT=- le51514 
VLIQ=0.0G13930 
RQD=1«/0oC0136 
E1»(PLVE»HLVE)/(ALVE»ROLVE»CLVE) 
E2=CLVE/(ALVE»R0LVE»CLVE*LEC0) 
FF1»1./(AR»LR) 
F1*(PLVB»LR»HLVB)/(3o*AR»LR) 
F2=1./(AC*L0»RCD) 
F3»j./(V*BIPR0) 
FU»le/V 

PARAMETERS SUPERHEATER 

G2=PLVS*LSUR*HLVS 
TENTATIVE INITIAL ENTHALPIES 
H(l)=730. 
HI2)«713e 

DYN03010 
DYNO3020 

·····»·»···· DYN03030 
DYN03043 
DYN03050 
DYN03060 
DYN03070 

,ALVB,ALVS,ADDYN03Q80 
DYN03090 
DYNÕ3100 
DYNÛ311Q 
DYN03120 
DYNQ3U0 
DYN03Ì40 
DYN03150 

«**»*«»»***»#DYN03160 
DYNÕ317Õ 
DYN03Ì80 
DYN03190 
DYN03200 
DYN0321Q 
DYNQ3220 
DYN03230 
DYN03240 
DYN03250 
DYN03260 
DYN03270 
DYN03280 
DYN03290 
DYN03300 
DYN03310 
DYN03320 
DYN03330 
DYN03340 
DYNÖ3350 
DYN03360 
DYN03370 
DYN03371 
DYN03372 
DYN03330 
DYN03390 
DYN03400 
DYN03410 
DYN03420 
DYN03430 
DYN03440 
DYNC3450 
DYN03460 
DYN03470 
DYN03480 
DYN03490 
DYN03500 
DYN03510 
DYN03520 
DYN03530 

ij 
:? 
:H 
,12 
,13 

'Al 

•M 

:¡1 
,2U 
,25 
,26 
27 
,28 
,29 
,30 

31 

,34 

,2 

ro 



SOURCE STATEMENT 

C C 
C C C 

i 
C c c c 

c c c c 
c c 

c 
c 

c 
c 
c 
c 

SAHYB2 SECOND 
EXTERNAL FORMULA NUMBER 

H(3)*692. 
READ OUT SUBROUTINE CALL RECCRD(T,X,DX) 
····»·»··· •••«••••»•«•EQUATI ONS···»»*····*·*··········*········»· 

300 CONTINUE 
SECONDARY FLOW EQUATIONS 
DH*I1(1) -CLVE*TF WREQ=P0WER*P0WVAR/(4187o*DH) 

BOILER AND UPPER DOME 
TSAT=TLSAT(X(28)> VS=VSVAP(X(23).TSAT) ISAT=EVSAT(TSAT) ILIQ=ELSAT(TSAT) 
VSPEC=VLIC+X(3C)*VS 
WR=SCRT(K2*<X(30)»VS/VSPEC) ) 
I = A I + B I P R 0 * ( X ( 2 3 ) / X ( 2 9 ) ) 
CLAT=ISAT- IL IC 
ROSAT=lo/VS 
SECONDARY TEMPERATURES 

BOILER 
DO 310 I K = 4 , 6 

310 TSEC(IK)=TSAT 

ECONOMISER 
EE2=E2»WREC 
E E l = l . / < t ' l + E E 2 ) 
TSEC(8 )= (EJ*X (2^ )+EE2«TF)»EE1 
TSEC7 = IE1 *X (26 )+EE2«TSEC(3 ) )»EE1 
C0MP2=C0MPAR(TSCC7-TSAT,2) 
TSEC(7)=TSEC7»(1.-COMP2)+TSAT»COMP2 

CONDENSATION RATE 
WCC=X129)-R0SAT 
WC=WCK»WCC*(C0MPAR(WCC, 1 ) ) 
S0MMA=F1»(X(23)+X(24)+X(25) -3o*TSAT)+(CLVE»WREQ»TSEC(7)+WR»X(31) -

1(WR+WREQ>*( ILIQ+X(3C)«CLAT))»FF1 
PDER=(-AI»(X(3C)»(WREQ+WR)-WREQ-WC)+ISAT»(X<30)»(WREQ+WR))-WREQ»I 

1 IL IQ»WC)*F3 
Χΐ2β)=Ρ STEAM PRESSURE DX(28)=PCER 
X(29)=RC BOILING MIX.DENSITY DX<29)»F4*j (X(,30)»(WREQ + WR) )-WREQ-WC) . . . 

04/11/67 
INTERNAL FORMULA NUMBER!S) 

DYN03540 DYN03550 DYNÕ3560 DYN03570 DYNQ3580 ►DYNÖ3590 DYN03600 DYN03610 DYN03620 DYN03630 DYN03640 DYNQ365Õ DYN03660 DYN03670 DYN03680 DYN03690 DYN03700 DYN03710 DYN03720 DYN03730 DYN03740 DYN03750 DYN03760 DYN03770 DYN03780 DYN03790 DYNQ3800 DYN03810 DYN03820 DYN03830 DYN03840 DYN03B50 DYN03860 DYN03870 DYNQ3880 DYNQ389Q DYN03900 DYN03910 DYN03920 DYN03930 DYN03940 DYN03950 DYN03960 DYNQ397Q DYN03980 DYN0399Õ DYN04000 DYN04010 -DYN04020 DYN04Û30 DYNQ404Q DYNQ405Q DYN04060 DYN04070 DYN04080 DYN04090 

,35 

,36 

,37 
,38 

39 40 41 42 43 44 45 46 47 

,48 ,49 

ii! 
,54 ,55 ,56 
,57 
,58 
,59 

,60 

,61 

,62 

ro 
UI 
OD 

,51 



SAJYB2 SECOND 04/11/67 
EXTERNAL FORMULA NUMBER - SOURCE STATEMENT - INTERNAL FORMULA NUMBER!S) 

C DYN04100 C X(3C)=XX STEAM QUALITY DYN04110 ,63 DX<30) = (VSPEC/CLAT)»SOMMA-!<Β IL*3LAT*X(3G))»PDEl)/CLAT DYNU412: C 

C 

DYN0413C' C Xiii ) = ir,CW ENTHALoDOWNCOMMER DYN0414U ,64 
DX{51)=r:»Wn»( ILIQ-X(31 ) ) DYN04150 DYNG 4 16.1 

C ENTHALPY EQUATIONS SUPERHEATER DYNC'4170 C OYN04 13C ,65 CALL SUPKTR(X) DYN0419P ,66 RETURN OYNG42V) ,67 END DYNC4210 ,68 

ro 



SAHYB2 SUPHTR 

EXTERNAL FORMULA NUMBER SOURCE STATEMENT 
04/11/'7 

INTERNAL FORMULA NUMBER; 

C 
C 
C 
C 

c 
c 

c 
c 

c 
c 

c 
c 

SUBROUTINE SUPHTR!X) 

SUPERHEATER SECONDARY SIDE 

H U ) ENTHALPY Cr SUPERHEATED STEAM IN CELL J 

DIMENSION GH! 3 ), ABE ! 3 ) , C ! 3 ) , EOLO ( 3 ) , STPP ( 3 ) ,ΧΠ J) 
REAL I 
LOGICAL GH 
COMMCN/SECVAR/TSEC!1),PNTR,ERROR,REG,TAV,CT,TOUT, 
ÎTOL,TIN.TSAT,POWER 
COMMCN/SUPHT/I,H!4),WRCQ,G2 
DIMENSION VP!7) 
DATA TvP!L),L=l,7)/4öo,6Co, "(0o,100o,130o,160o ,2'0c/ 
NZ NUMBER OF ZONES FINITE DIFFERENCES 
TOLERANCE CF ONE PER CENT ON H(J) 
DATA T0LER,NZ,NZP1/16„,3,4/ 

DO 5 J«1.3 
GHU)=,FALSE, 

5 STPP(J)=16o 
H!4)«I 

MAIN ITERATION LOOP 
DO IOC JJ=1,NZ 
J=*NZP1­JJ 
JK*J*19 

10 CONTINUE 
EOLD!J)=E(J) 

X!28) STEAM PRESSURE 
TSEC!J)= FTW0V(t,7,H(J),X!23),VP) 

ENTHALPY EQUILIBRIUM EQUATION 

E(J) = CK J + 1J­H! J))+G2»(X!JK)­TSEC!J))/WREQ 

ABE!J)«ARS!ElJ)) 

IFIABE!J)cLT0TCLER) GO TO ΙυΟ 

IFÍE!JÍ.GT.Je) GO TO 20 
IFIECLD!JíeGT.Co) STPP!J)*STPP!J)»0o5 
HU)=H! J)­STPP! J) 
GO TC 10 

20 IFIECLD!J)*LE«C.) 
H(J)*HTJ)*STPP(J) 
GO TC 1C 

100 CONTINUE 
RETURN 
END 

STPP!J)=STPP(J)»0o5 

DY NO4130 
DYN04240 
DYN04 2 50 
DYNO426? 
DYN0427C 
DYN04230 
DYN04290 
DYN­43.0 
DYNC4310 
DYNOU320 
DYN04"S.ÕO 
DYN04340 
DYN04350 
DYN04360 
DYN04370 
DYN04380 
DYN04390 
DYN04400 
DYNC441D 
DYN04420 
DYN04U30 
DYN0444Ö 
DYN04450 
DYNC4460 
DYN04470 
DYN04480 
DYNO4493 
DYNC4500 
DYN0451C 
DYN04520 
DYN04530 
DYN04540 
DYN04550 
DYN04560 
DYN04570 
DYN0458Ó 
OYNC4590 
DYN04600 
DYNÕU61Õ 
DYN04620 
DYN0463C 
DYNG464Q 
DYNC4650 
DYN0466Õ 
DYN04670 
DYN04630 
DYN0469Ò 
DYN0470Ô 

,1 

,5 
,6 

Ü 
10 

,11 

14 
17 
20 
23 
24 
25 

ro 

c 

50 

11 

,15 
,18 
,21 

,26 

,31 

,16 
,19 
.22 

27 



SAIIYB2 VARIAT 
EXTERNAL FORMULA NUMHEf JOURCE STATEMI 

0 4 / 1 1 / 6 7 
INTERNAL FORMULA NUMBER!S) 

C 
C 
C 
c 
c 
c 
c 
c 
c 
c 

SUBROUTINE VARIAT 

COMMCN/VAR VAR/ΤΓ, CTO, PONVAR,WOL VAR, PN VAF,,D ERROR, TAV, 

INSERT HERE VARIATION LAWS FOR 
TF FEEDWATCR TEMPERATURE IN DEGREES 
CTO REACTIVITY = 1c AT FQ'IILIMRIUM 
POWVAR SECONDARY POWER VARIATI0N=1C 
WOLVAR ORGANIC TLOW VARIATIONS AT 
Ρ WAR REACTOR P0WER=1o AT N„Po 
DERRCR DISTURBANCE ON PECULATORS 
TAVZ REFERENCE ORGANIC MEDIUM T-MPE 

RETURN 
END 

AT NOMINAL 

N,P. 

POWER 

AT EQUILIBRIUM 
RATURE IN DEGREES 

DYN047QC 
D Y NC 4 7 ?Π 
D Y,MC 4740 
DYN: 475'.t 
DY NC 4 76' . 
DYM047~0 
DYN04780 
0YN '47?0 
DYNO 4400 
DYNC 4810 
DYN04F20 
DYNC4R3J 
D

V
NC4 34Í> 

DYNf'4650 

C 
C 
C 

SA'IYB2 RECORD 
EXTERNAL FORMULA NUMBER

- STATEMENT 
04/11/67 

INTERNAL FORMULA NUMBER!S) 

ΐΕΟ,ΤΑν,ΟΤ,ΤΟυ^ 

DYN04°70 
DYNÛ4880 
DYN

1
" 4390 

DYN04900 
DYN0491: 

l »J L f I I IM , I :> « ' ι
 f
 ' < ­ f I ~- ". D Υ Ν w' 4 9 i. O 

COMMCN/SECPAR/PLVE,PLVB,PLVS,HLV£,HLVft,HLVS,LECO,ALVE,ALVB,ALVS,ADDYN?4930 
■·■ -- DYN04940 

DYN04950 
DYN04960 

READ· OUT STATEMENTS OF SAHYB ARE GROUPED HERE 

SURRCUTINE RECORD!Τ,Χ.ΟΧ) 
DIMENSION X! IE!) ,0X( H O ) 
COMMCN/VARVAR/Tr,CTO,POWVAR,WOLVAR,PNVAR,DERROR,TAVZ 
C0MMCN/SLPHT/I,H(M,WRCQ,C2 
COMMCN/SECVAR/TSEC(*),PITR,-RROR,R 
1T0L,TIN.TSAT,POWER 

1,AR,LSUP.,LCVA,V,L0,LR,VLD0 
C0MMCN/RECRD/WR,WC,VS,VSPEC,ISAT,ILIQ,ROSAT 

:i!ERROR,ERROR,3HREG,REG,?HTAV,TAV,2HCT,CT, CALL WRITE(4M°NTR,PNTP.1 
14HT0UT |TCUTf3HT0L»T0L.:>·'ΜΐΊ,ιΐΓΐ,4πΐϋ'*ι»ΐ3«ι.ΗΠΗΓ.::Λ»Η'νΕ*».'.π»,Λ|»»π 
22HWC,WC,5HTSECl,TSEC(*),5HTr,£C2,TSEC(2Í ,5HTSFC3,TSEC! 3),4HHl1), 
3HI 1) ,4 HH (2), Η! Γ.) 14 HH! 3) , M! 3 ) , 2HV5 , VS , 5HVSPEÇ , VSPECii+H I SAT , ISAT, 

r . i j , c n i « v i m v i / . π ν , ι ι υ ι 
ITri,TIÚ,4HTSÃT,TSAT,4HWREQ,WREQ,?.HWR,WR, 

4 4 H I L I Q , IL IC. .SHR0SAT,R0SAT,5 ITSEC7.T 
CALL OUTPUT! 1 . 1, 3 , 1 : ; , 11 , 12 , "ί 3 ,14. , 15 , 
125,26,27,23,2' 
RETURN END 

'λ Í6 
(7),5HTSEC8,TSEC!3)) 
,17,13,19,20,21,22,23, 24, 

DYN04970 
DYNL493G 
DYN04990 
DYN050uO 
DYN05010 
DYN05G2Ö 
DYN05C50 
DYNO5040 
ΟΥNC5O5O 
DYNL506C 
DYN05' 70 

DYN̂ 5.;e'.· 

ro 

,2 
, 5 
,4 



SA IY8E- VSVAP 
EXTERNAL rORMUl. A ".our .TLMENT 

' . 4 / 1 1 / 6 7 
INTERNAL FORMULA NUMBER!S) 

FU NC 
DATA 

1 3 5 5 " 
2 7 3 5 / 

S I G N 
TAU= 
TAU' 
S I G N 
VSVA 

1 » » 3 ) 
RE TU 
END 

T I C N 
! R , A , 

A = P » Il 
(T + 27 
= TAU* 
A 1 = S I 
P = R»T 
« C » S I 
R\ 

V VAP 

e It ". 1 6 
": o * 5 ) 
* : . ι ; 
sv λ» s 
A U / S I 
GMA + C 

. ! . , F , C t», DP . E ? ) / I , 3499 ?E- .V. 
1 E 6E-■" 4 , 3 a Ì 7 3,', 2 E - 1 5 , fi.. C6 T S 

r - C 3 

« l »
r
- 4 4 3 E - '3 

IG-1A/ I TAU*« 14) 

; :NA-A/ 
/ ( T A U » 

* ? : 
■ 3 Ί · - - . 
5,1. : 5! 

/. o 
■ 8 , 

93945E-
l o 2 6 £ 9 1 , 

DYNO5100 
3 , 4 o D Y N C 5 1 1 0 
1 32DYN0 5 1 2 0 

DYN0515C 
D Y N 0 5 Î 4 0 
DYNC'5150 
DYN0 5 1 6 0 
DYNE 5 1 7 0 

TAU 1 + E« (C P-S t G M A ) » T A U l - S î GMA1 » ( B - ( D P * S I 0 M A - T A U D Y N Í 5 1 R
n 

» ! 8 ) ) - { ' i o - E P » S I 0 r * A ) * F * T A U DYNC5190 
DYN05200 
DVN05210 

,3 
,4 

,5 

SA IYP2 TL S AT 

EXTERNAL FORMULA NUMB! SOURCE STATEVENT 
04/11/67 

INTERNAL FORMULA NUMBER!S) 

FU NC 
DO UB 
DIME 
DATA 

1 o 2( 7 
22011 
PP = A 
S=A( 
DO 1 

s=s» 
CON Τ 
TLSA 
RETO 
END 

TIG i TLS 
LE PRECI 
\SI0N A( 
(Ai Ι) ,I 

17117 τC-

LOG!P) 
1 ) « Ρ Γ ♦ A ( 

C I = E , 1 : 
P P + A ( I ) 
I NU E 
T = S 
RN 

AT C ) 

SION A 
1
r
 ) 

- ι . 1 2 ) 
r _ ι _ -τ 

77ΓΊ46 

2) 

/-' 
4 : " .-. ( ",ο-Ι,-ί 

2° t" -, 24 29 n-^.-Uo 26856 15 ID-7.1*5343731340-6. 
739148425D-4,lo~°^37729D-3,2 0 1 296 

^>,E7647,2o73ñ4?U^
c
D+1,9o9C927ir99D+1/ 

DYNO 
DYNO 
DYNO 

2DYN'? 
8DYN0 
DYNE 
DYNO 
DYNO 
DYNO 
DYNC 
DYNf 
DYNC 
DYNO 
DYNC 

5230 
524;·, 
5250 
5260 
527Π 

5280 
5t90 
5 300 
S310 
5 320 
533C 
5
7
40 

53 E 0 
5360 

,1 

,3 

'ï 
» > 

,7 
'ï 

t ■> 

cr» 

PO 

,6 



SAHYB2 EVSAT 04/11/67 
EXTERNAL FORMULA NUMBER - SOURCE STATEMENT - INTERNAL FORMULA NUMBER!S) 

FUNCTION EVSAT(T) DYNC5330 DOUBLE PRECISION A DYNC5390 DIMENSION AI1Ç) DYN0540C DATA (A!I),1*1,7)/2j4E67231^30-1,-20252469249.6,631525737,-1a02R3RDYN054l0 1362D* 1, 3e 761 67 5570 + 0,4 o'3 5160393n + l,5o 972572.4060 +2/ DYN05U20 TT=T»Oo?l DYNO 54 30 ,1 S=Al1)»TT+A!2) DYN0544Û ,2 DO 10 1=3,7 DYN05450 ,3 S=S»TT+A(I) DYN05460 ,4 ία CONTINUE DYN0547Q ,5 ,< EVSAT=S DYN05480 ,7 RETURN DYN054 90 ,8 END DYN055JO ,9 

ro 
SAUYB2 ELSAT 04/11/67 <* 

EXTERNAL FORMULA NUMBER - SOURCE STATEMENT - INTERNAL FORMULA NUMBER!S) w 

FUNCTION ELSAT !T) DYN05520 DOUBLE PRECISION A DYN05530 DIMENSION A!15) ^ DYN05540 DATA I At I) ,1 = 1 ,10)/6c60_'29707PD-2,-<O46522633lD-l . 5, 700027955.-1, 8DYN05550 16838P84D+1 . 30622722:MD+1 ,-4c 19363442D+ 1,2o88544i< 361D+1 ,-le06332536DYN0556D 21D+1 ,1e014S524 19D + 2,-1o1357r)642',D-2/ DYN05570 TT=T«0.01 DYN05580 ,1 S=A(1)»TT+A(2) DYN05590 ,2 DO 10 1=2.10 DYN05600 ,3 S=S»TT+A(I) DYN0561Q ,4 10 CONTINUE DYN05620 ,5 ,6 ELSAT=S DYN05630 ,7 RETURN DYN05640 ,3 END DYN05650 ,9 



264 

APPENDIX III 

1) Example of input 

The input should be done for each case following section 10. 

This example should be considered as indicative; the initial 
conditions represent an equilibrium state which has been 
verified with the analogue computation. 

The tables have been extracted from standard steam tables* and 
may be considered as a permanent part of DYNOR, unless the 
range of pressures or temperatures need to be extended» 

2) Example of output 

Equilibrium at 100% of nominal power and after 4l8 seconds of 
problem time; these figures are indicative, since they may 
be altered modifying the references' values to the regulator. 

Ernst SCHMIDT VDI: 
VDI Wasserdampftafeln, Ausgabe A (kcal-at), 
R. Oldenbourg, Muenchen, 1963 
See also appendix IV 



D A T A (Zones de 10 colonnes ) 

MtOBLCM J 0ΑΤβ I PAQE .| OF 2_ 

1 2 3 4 * 4 7 · , >OIUJì3l4IJl6)7ie!l»2021Ba24,2SÌ4272e»303injS34343óV3e3»434l<aC44444i47484»53SlOS3J455J6yjeS9*4l42e 
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VJ1 



D A T A (Zones de 10 colonnes) 

PROBLEM DATE | PAGE * . OF X 

1 a 3 4 S · 7 t 9 10 Π 1213 14 IS 16 ΙΠβ 1»X 21 B H 24 _ 26 27 »2? »31 M »34 35 » ¡ t f » 39 «41 «2 43 44 44 44 47 48 4»«^^ 
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APPENDIX IV 

Superheater steam tables: 

Temperature versus enthalpy, for different values of pressure· 

(Note that the first point of each table is the enthalpy of 
saturated water). 



TAlìlfc Ι 40 ATM 

2.5819800t 

6.6946499E 

6.7020399F 

6.7909599E 

6.8713199F 

6.9457399F 

7.0158799F 

7.0828499E 

7.1474199E 

7.2101199E 

7.2713299E 

7.3313599F 

7.3904300t 

7.4487099t 

7.506330OE 

7.5633999E 

7.62002.00E 

7.6762600F 

02 

02 

02 

C2 

02 

02 

02 

02 

02 

02 

02 

02 

02 

02 

02 

02 

02 

02 

N. OF POINTS 

2.4917200t 

2.4917200E 

2.5000000F 

2.600000CE 

2.7000000E 

2.8000000E 

2.9000000F 

3.0000000E 

3.1000000E 

3.2000000E 

3.3000000E 

3.4000000E 

3.5000000E 

3.6000000F 

3.7000000E 

3.8000C00E 

3.9000000E 

4.0000000E 

02 

02 

02 

02 

02 

02 

02 

02 

02 

02 

02 

02 

02 

02 

02 

02 

02 

02 

♦* NUMBER OF POINTS IN TABLE 18 *♦ 

TABLE 2 60 ATM 

2.8817400E 02 

6.6525199E 02 

6.714559SE 0? 

6.8141499E C2 

6.9043199E 02 

6.987500CF 0? 

7.0653799F 0? 

7.1391700E 02 

7.2097600E 02 

7 .2778000t 02 

7.3437999E 02 

7.4081299F 02 

7.4711099E 02 

7 .53295001 02 

7.5938599F 02 

N. OF POINTS 

2.7428100E 02 

2.7428100E 02 

2.8000000E 02 

2.9000000E 02 

3.0000000E 02 

3.100C000E 0? 

3.2000000E 02 

3.3000000E 02 

3.4000000E 02 

3.5000000E 02 

3.6000000F 02 

3.7000000F 02 

3.8000000F 02 

3.9000000Ê 02 

4.Λ000000Ε 02 

** NUMBER OF POINTS IN TABLE 15 ** 



TABLE ì 80 ΔΤΝ 

3.1264499h 02 

6.5899299F C? 

6.6702999E 02 

6.7842399t 02 

6.8665H99F 02 

6.98008991 C2 

7.0667799E 02 

7.1481100t 02 

7.2252199E 02 

7.298950CF 02 

7.3699399E 02 

7.43Ö6999E 02 

7.5056199t 02 

Ν. OF PCINTS 

2.9361900t 02 

2.9361900E 02 

3.0000000E 02 

3.10C0000E 02 

3.2000000E 02 

3.300CCOOE 02 

3.4000000F 02 

3.5000000E 02 

3.6000000t 02 

3.7000000E 02 

3.8000000F 02 

3.90CC000E 02 

4.0000000E O? 

** NUMBF« UF POINTS IN TABLE 13 » · 

TABLf 4 100 ATM 

3.3404 9001 02 

6 .5174499t 02 

6 .52i9r t99f 02 

6.0fc29599l 02 

6.7855499Γ 0? 

6 .8S56100Í 02 

6.9959099F 0? 

7.0fcH579-Jf 12 

7 .1752099t 02 

7.25 70099t 02 

7 . Í349000E 02 

7.409'i29
!
iF ΎΙ 

Ν. OF POINTS 
3.0953999t 02 
3.0953999F 02 
3.10C0000E 02 
3.2000000t 02 
J.300C000E 02 
3.4000000t 02 
3.500C000E 02 
3.600C000F 02 
3.7000000E 02 
3.6O0OO00E 02 
3.9000000E 02 
4.0000COOF 02 

*♦ NUMBER OF POINTS IN TABLE 12 *♦ 

Γ0 

O 



TABLt 5 130 ATM 

3 .3630950 t OC 

6 . 4 0 1 3 1 9 9 t 02 

C.4100H99F 02 

6 .5722400 t 02 

6 .7143499L 02 

6 .8408599 t 02 

6 .9551299 t 02 

7.0597099F 02 

7.1565400E 02 

7 .2471499t 02 

N. OF POINTS 

3.2930700t 0? 

3.2930700F 02 

3.300C000F 02 

3.400C000E 02 

3.5000000E 02 

3.60000GOF 02 

3.70C0000E 02 

3.8000000F 02 

3.9000000F 02 

4.0000CC0F 02 

** NUMBER OF POINTS IN TABLF 10 ** 

lArtLE 6 160 ATM 

3.9004200Γ 02 

t . 2 8 4 5 3 9 9 t C2 

6.3558-J00F 02 

6 . 5 3 1 2 6 0 0 t 02 

6 .6850600 t 02 

6.e2lB60Ct» 02 

6 .9451900t 02 

7.C577199F 02 

t. OF.POINTS 

3.4572900F 02 

3.45729C0E 02 

3.5C0CC00t 02 

3.6000t00t 02 

3.7000C00F 02 

3.8CCC000F 02 

3.9OCOÜ00F 02 

4.CC0OO00F 02 

** NUMBER OF POINTS IN TABLF 8 *♦ 

Γ0 
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*♦ NUP8FH OF POINTS IN TABU 6 ** 



SOBROUTïHC g f g O L 

REGULATOR £ Q 

K ( l o j sÇOf ROR calf 

(»J -fe 

P N VAR, T A V Ζ 

TOOT 

WOL 
T l MC OC-.AV TAO 1 

REACTOR EQUATIONS 

P N T R « qeviron p o i v r e 

X ( i ) » T u 

Χ (2) ·. Τ Θ 

Χ (3) : TC 

Χ ( 4 ) toX(S) 

defcr/eel neutrons 

PNTR 

I 
Vi 

î 

S 

I 

TIN 

TOL 

Xf12) 

X( t3 ) 

X(1U) 

* (15 ) 

XOC) 

X ( 1 7 ) 

X ( 1 8 ) 

XOS) 

S U B R O U T I N E V A R I Â T 

P O W f R 

DEMAND 

*(20) 

X f W ) 

X (24) 

X f25 ) 

x(26) 

X ( 2 7 ) 

T IMC DELAY TAU 2 TOUTFC 

j u a g Q u r i N g DER Ρ « ί M A R V WALL 

D· «TUR­

BAN ce s 

POWER, R O W V A R 

OH,WREQ 

ÒOmROOTlNE 

TSEC(1),H(I) 

X(21) TsmtL<?),H(2) 

X(Z2) ITSK (3), H (S) 

T\SAT 

Χ ( 2 β ) » Ρ 

X ( 2 9 ) « l ? 0 

X (30) e XX 

X (3l)s|OOW 

T\sreC7) 

Trecce) 

T ^ 

SÜPHTR 

SUPERHEATER 

SUBROUTINE 

SECOND 

B O I L E R A M D D O M E 

E C O N O M I S E R 

O í 
SECOWDARV 



274 

R R F B R B N C E S 

(1) Control of Nuclear Reactor· and Power Plant· 
M.A. Schulta 
McGraw-Hill Book Company, Inc. 

(a) SAHYB-2: A Program for the Solution of Differential 
Equations using an Analogue-Oriontad Language 
H. d * Hoop, R. Monterosso 
BUR 3622e 



1»'4 ww* W^Wå 
mm 

NOTICE T O THE READER 

AU Euratom reports are announced, as and when they are issued, in the monthly 
periodical EURATOM INFORMATION, edited by the Centre for Information 
and Documentation (CID). For subscription (1 year : US$ 15, £ 6J() or free 
specimen copies please write to : 

Postfach 1102 
D-4 Düsseldorf (Germany) 

Office central de vente des publications 
des Communautés européennes 

2, Place de Metz 

Tw£r» Luxembourg 

•••••¡•iHUSHSnnà. 

disseminate knowledge is to disseminate prosperity — mean 

general prosperity and not individual riches — and with prosperity 

disappears the greater part of the evil which is our heritage from 

darker times. !»■!· 

vit-

::i
üiÜÍÍJÍÍ:!ÜP*

!!
'" 

mWm 

A W K o J l ! 

mSk Wm 

ma 



SALES OFFICES 

All Euratom reports are on sale at the offices listed below, at the prices given on the back of the 
front cover (when ordering, specify clearly the EUR number and the title of the report, which are 
shown on the front cover). 

WVVfP 

PW\ÎW%Î^tù''WmM 
WMWwÊk-fmmm 
Mmmmm 

OFFICE CENTRAL DE VENTE DES PUBLICATIONS 

DES COMMUNAUTES EUROPEENNES 

2, place de Metz, Luxembourg (Compte chèque postal N° 191-90) 

iE! 
« f c 

BELGIQUE — BELGIË 

MONITEUR BELGE 
40-42, rue de Louvain - Bruxelles 
BELGISCH STAATSBLAD 
Leuvenseweg 40-42, - Brussel 

D E U T S C H L A N D 

BUNDESANZEIGER 
Postfach - Köln 1 

FRANCE 

SERVICE DE VENTE EN FRANCE 
DES PUBLICATIONS DES 
COMMUNAUTES EUROPEENNES 
26, rue Desaix - Paris 15« 

LUXEMBOURG 

OFFICE CENTRAL D E VENTE 
DES PUBLICATIONS DES 
COMMUNAUTES EUROPEENNES 
9, rue Goethe - Luxembourg 

ÜSaifl 
NEDERLAND 

STAATSDRU K K E R I J 
Christoffel Plantijnstraat - Den Haag 

ITALIA 

L I B R E R I A DELLO STATO 
Piazza G. Verdi, 10 - Roma 

U N I T E D KINGDOM 

H. M. STATIONERY OFFICE 
P . O. Box 569 - London S.E.I 

«Η 

( iesaJliÜ 
CDNA04254ENC 

ì!Sjf'tì3iìj«EK3
+
 È'·!! 

■S 
EURATOM — C.I.D. 
51-53, rue Belliard 
Bruxelles (Belgique! 


	Table of contents
	I. INTRODUCTION
	1. First part of the studies
	2. Second part of the studies

	II. FIRST PART
	1. The mathematical model
	2. The analogue computation results

	III. SECOND PART
	1. The mathematic model
	2. Analogue computation results


