669 research outputs found
Recommended from our members
Plasmon induced deprotonation of 2-mercaptopyridine
Surface plasmons can provide a novel route to induce and simultaneously monitor selective bond formation and breakage. Here pH-induced protonation, followed by plasmon-induced deprotonation of 2-mercaptopyridine was investigated using surface- and tip-enhanced Raman scattering (SERS and TERS). A large difference in the deprotonation rate between SERS and TERS will be demonstrated and discussed with respect to hot-spot distribution. © 2020 The Royal Society of Chemistry
Recommended from our members
Local protonation control using plasmonic activation
Localized protonation of 4-mercaptopyridine (4-MPY), activated by light in the presence of silver nanoparticles is monitored under ambient conditions using surface-enhanced Raman scattering (SERS) and tip-enhanced Raman scattering (TERS). The reaction can be controlled by the excitation wavelength and the atmospheric conditions, thus, providing a tool for site-specific control of protonation
Large-scale wind-tunnel tests of descent performance of an airplane model with a tilt wing and differential propeller thrust
Wind tunnel tests of wing stall, performance, and longitudinal stability & control of large model v/stol tilt wing transport aircraf
Level of 25(OH)D Serum, Expression of Interleukin 4 and Glucocorticoid Receptor of Mononuclear Cell in Steroid Resistance Nephrotic Syndrome Children
Nephrotic syndrome (NS) is autoimmune disease and its steroid resistance status supposed correlate with 25(OH)D level and IL-4 expression. The aimed of this study was investigated 25(OH)D plasma level, IL-4 and GR expression of PBMC in steroid sensitive and resistant pediatric NS patients and the association of those parameters. 27 subjects were divided into three groups (control group, steroid resistant NS group, and steroid sensitive NS group). Peripheral blood mononuclear cells (PBMCs) isolated using Ficoll-Hypaque method. Plasma 25(OH)D level was measured using ELISA method. IL-4 and GR expression were measured using flowcytometry of PBMCs. This study showed that 25(OH)D level and GR expression were significantly different in control group compared to steroid resistant NS group (p<0.05). Plasma 25(OH)D level, IL-4 and GR expression were not correlated each other in NS patients (p>0.05). Plasma 25(OH)D level, IL-4 and GR expression were not contributed in steroid resistance in NS patients. However, GR expression has highest contribution in steroid resistance of NS patient (Wald score 1.198). Plasma 25(OH)D level and GR expression was lower in steroid resistant NS group. GR expression has a highest contribution in steroid resistance of NS patients
Laser Spectroscopic Technique for Direct Identification of a Single Virus I: FASTER CARS
From the famous 1918 H1N1 influenza to the present COVID-19 pandemic, the
need for improved virial detection techniques is all too apparent. The aim of
the present paper is to show that identification of individual virus particles
in clinical sample materials quickly and reliably is near at hand. First of
all, our team has developed techniques for identification of virions based on a
modular atomic force microscopy (AFM). Furthermore, Femtosecond Adaptive
Spectroscopic Techniques with Enhanced Resolution via Coherent Anti-Stokes
Raman Scattering (FASTER CARS) [1] using tip-enhanced techniques markedly
improves the sensitivity.Comment: 16 pages, 3 figure
Recommended from our members
Laser spectroscopic technique for direct identification of a single virus I: FASTER CARS
From the famous 1918 H1N1 influenza to the present COVID-19 pandemic, the need for improved viral detection techniques is all too apparent. The aim of the present paper is to show that identification of individual virus particles in clinical sample materials quickly and reliably is near at hand. First of all, our team has developed techniques for identification of virions based on a modular atomic force microscopy (AFM). Furthermore, femtosecond adaptive spectroscopic techniques with enhanced resolution via coherent anti-Stokes Raman scattering (FASTER CARS) using tip-enhanced techniques markedly improves the sensitivity [M. O. Scully, et al, Proc. Natl. Acad. Sci. U.S.A. 99, 10994-11001 (2002)]
Recommended from our members
Plasmon response evaluation based on image-derived arbitrary nanostructures
The optical response of realistic 3D plasmonic substrates composed of randomly shaped particles of different size and interparticle distance distributions in addition to nanometer scale surface roughness is intrinsically challenging to simulate due to computational limitations. Here, we present a Finite Element Method (FEM)-based methodology that bridges in-depth theoretical investigations and experimental optical response of plasmonic substrates composed of such silver nanoparticles. Parametrized scanning electron microscopy (SEM) images of surface enhanced Raman spectroscopy (SERS) active substrate and tip-enhanced Raman spectroscopy (TERS) probes are used to simulate the far-and near-field optical response. Far-field calculations are consistent with experimental dark field spectra and charge distribution images reveal for the first time in arbitrary structures the contributions of interparticle hybridized modes such as sub-radiant and super-radiant modes that also locally organize as basic units for Fano resonances. Near-field simulations expose the spatial position-dependent impact of hybridization on field enhancement. Simulations of representative sections of TERS tips are shown to exhibit the same unexpected coupling modes. Near-field simulations suggest that these modes can contribute up to 50% of the amplitude of the plasmon resonance at the tip apex but, interestingly, have a small effect on its frequency in the visible range. The band position is shown to be extremely sensitive to particle nanoscale roughness, highlighting the necessity to preserve detailed information at both the largest and the smallest scales. To the best of our knowledge, no currently available method enables reaching such a detailed description of large scale realistic 3D plasmonic systems
High-throughput sequencing reveals a simple model of nucleosome energetics
We use nucleosome maps obtained by high-throughput sequencing to study
sequence specificity of intrinsic histone-DNA interactions. In contrast with
previous approaches, we employ an analogy between a classical one-dimensional
fluid of finite-size particles in an arbitrary external potential and arrays of
DNA-bound histone octamers. We derive an analytical solution to infer free
energies of nucleosome formation directly from nucleosome occupancies measured
in high-throughput experiments. The sequence-specific part of free energies is
then captured by fitting them to a sum of energies assigned to individual
nucleotide motifs. We have developed hierarchical models of increasing
complexity and spatial resolution, establishing that nucleosome occupancies can
be explained by systematic differences in mono- and dinucleotide content
between nucleosomal and linker DNA sequences, with periodic dinucleotide
distributions and longer sequence motifs playing a secondary role. Furthermore,
similar sequence signatures are exhibited by control experiments in which
genomic DNA is either sonicated or digested with micrococcal nuclease in the
absence of nucleosomes, making it possible that current predictions based on
high-throughput nucleosome positioning maps are biased by experimental
artifacts.Comment: 36 pages, 13 figure
Recommended from our members
A classical description of subnanometer resolution by atomic features in metallic structures
Recent experiments have evidenced sub-nanometer resolution in plasmonic-enhanced probe spectroscopy. Such a high resolution cannot be simply explained using the commonly considered radii of metallic nanoparticles on plasmonic probes. In this contribution the effects of defects as small as a single atom found on spherical plasmonic particles acting as probing tips are investigated in connection with the spatial resolution provided. The presence of abundant edge and corner sites with atomic scale dimensions in crystalline metallic nanoparticles is evident from transmission electron microscopy (TEM) images. Electrodynamic calculations based on the Finite Element Method (FEM) are implemented to reveal the impact of the presence of such atomic features in probing tips on the lateral spatial resolution and field localization. Our analysis is developed for three different configurations, and under resonant and non-resonant illumination conditions, respectively. Based on this analysis, the limits of field enhancement, lateral resolution and field confinement in plasmon-enhanced spectroscopy and microscopy are inferred, reaching values below 1 nanometer for reasonable atomic sizes
Aqueous Black Colloids of Reticular Nanostructured Gold
Since ancient times, noble gold has continuously contributed to several aspects of life from medicine to electronics. It perpetually reveals its new features. We report the finding of a unique form of gold, reticular nanostructured gold (RNG), as an aqueous black colloid, for which we present a one-step synthesis. The reticules consist of gold crystals that interconnect to form compact strands. RNG exhibits high conductivity and low reflection and these features, coupled with the high specific surface area of the material, could prove valuable for applications in electronics and catalysis. Due to high absorption throughout the visible and infrared domain, RNG has the potential to be applied in the construction of sensitive solar cells or as a substrate for Raman spectroscopy
- …