379 research outputs found

    Constraining the pickup ion abundance and temperature through the multifluid reconstruction of the Voyager 2 termination shock crossing

    Full text link
    Voyager 2 observations revealed that the hot solar wind ions (the so‐called pickup ions) play a dominant role in the thermodynamics of the termination shock and the heliosheath. The number density and temperature of this hot population, however, have remained unknown, since the plasma instrument on board Voyager 2 can only detect the colder thermal ion component. Here we show that due to the multifluid nature of the plasma, the fast magnetosonic mode splits into a low‐frequency fast mode and a high‐frequency fast mode. The coupling between the two fast modes results in a quasi‐stationary nonlinear wave mode, the “oscilliton,” which creates a large‐amplitude trailing wave train downstream of the thermal ion shock. By fitting multifluid shock wave solutions to the shock structure observed by Voyager 2, we are able to constrain both the abundance and the temperature of the undetected pickup ions. In our three‐fluid model, we take into account the nonnegligible partial pressure of suprathermal energetic electrons (0.022–1.5 MeV) observed by the Low‐Energy Charged Particle Experiment instrument on board Voyager 2. The best fitting simulation suggests a pickup ion abundance of 20 ± 3%, an upstream pickup ion temperature of 13.4 ± 2 MK, and a hot electron population with an apparent temperature of ~0.83 MK. We conclude that the actual shock transition is a subcritical dispersive shock wave with low Mach number and high plasma β.Key PointsFirst multifluid MHD reconstruction of the termination shockThe termination shock is a high‐β low–Mach number dispersive shock waveObservational constraint on the pickup ion abundance and temperaturePeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/116003/1/jgra52059_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/116003/2/jgra52059.pd

    Results of the NASA Kennedy Space Center 50-MHz Doppler Radar Wind Profiler Operational Acceptance Test

    Get PDF
    This paper presents results of the new Kennedy Space Center (KSC) 50-MHz Doppler Radar Wind Profiler (DRWP) Operational Acceptance Test (OAT). The goal of the OAT was to verify the data quality of the new DRWP against the performance of the previous DRWP in order to use wind data derived by the new DRWP for space launch vehicle operations support at the Eastern Range. The previous DRWP was used as a situational awareness asset for mission operations to identify rapid changes in the wind environment that weather balloons cannot depict. The Marshall Space Flight Center's Natural Environments Branch assessed data from the new DRWP collected during Jan-Feb 2015 against a specified set of test criteria. Data examination verified that the DRWP provides complete profiles every five minutes from 1.8-19.5 km in vertical increments of 150 m. Analysis of 49 concurrent DRWP and balloon profiles presented root mean square wind component differences around 2.0 m/s. Evaluation of the DRWP's coherence between five-minute wind pairs found the effective vertical resolution to be Nyquist-limited at 300 m for both wind components. In addition, the sensitivity to rejecting data that do not have adequate signal was quantified. This paper documents the data, quality control procedures, methodology, and results of each analysis

    Crystallization and Preliminary Analysis of Crystals of the 24-Meric Hemocyanin of the Emperor Scorpion (Pandinus imperator)

    Get PDF
    Hemocyanins are giant oxygen transport proteins found in the hemolymph of several invertebrate phyla. They constitute giant multimeric molecules whose size range up to that of cell organelles such as ribosomes or even small viruses. Oxygen is reversibly bound by hemocyanins at binuclear copper centers. Subunit interactions within the multisubunit hemocyanin complex lead to diverse allosteric effects such as the highest cooperativity for oxygen binding found in nature. Crystal structures of a native hemocyanin oligomer larger than a hexameric substructure have not been published until now. We report for the first time growth and preliminary analysis of crystals of the 24-meric hemocyanin (MW = 1.8 MDa) of emperor scorpion (Pandinus imperator), which diffract to a resolution of 6.5 Å. The crystals are monoclinc with space group C 1 2 1 and cell dimensions a = 311.61 Å, b = 246.58 Å and c = 251.10 Å (α = 90.00°, β = 90.02°, γ = 90.00°). The asymmetric unit contains one molecule of the 24-meric hemocyanin and the solvent content of the crystals is 56%. A preliminary analysis of the hemocyanin structure reveals that emperor scorpion hemocyanin crystallizes in the same oxygenated conformation, which is also present in solution as previously shown by cryo-EM reconstruction and small angle x-ray scattering experiments

    Voyager 2 Observations Near the Heliopause

    Get PDF
    This paper discusses plasma characteristics in the heliosheath region before the heliopause (HP), at the HP, and in the very local interstellar medium (VLISM). The Voyager 2 (V2) HP was a sharp boundary where the radial plasma currents went to background levels. The radial flow speeds derived from 53-85 keV (V1) and 28-43 keV (V2) ion data decreased about 2 years (8 AU) before the HP at V1 and V2. A speed decrease was not observed by the V2 plasma instrument until 160 days (1.5 AU) before the HP crossing when V2 entered the plasma boundary layer where the plasma density and 28-43 keV ion intensity increased. We determine the HP orientation based on the plasma flow and magnetic field data and show these observations are consistent with models predicting a blunt HP. Variations are observed in the currents observed in the VLISM; roll data from this region clearly show the plasma instrument observes the interstellar plasma and may be consistent with larger than expected VLISM temperatures near the HP

    Voyager 2 Observations Near the Heliopause

    Get PDF
    This paper discusses plasma characteristics in the heliosheath region before the heliopause (HP), at the HP, and in the very local interstellar medium (VLISM). The Voyager 2 (V2) HP was a sharp boundary where the radial plasma currents went to background levels. The radial flow speeds derived from 53-85 keV (V1) and 28-43 keV (V2) ion data decreased about 2 years (8 AU) before the HP at V1 and V2. A speed decrease was not observed by the V2 plasma instrument until 160 days (1.5 AU) before the HP crossing when V2 entered the plasma boundary layer where the plasma density and 28-43 keV ion intensity increased. We determine the HP orientation based on the plasma flow and magnetic field data and show these observations are consistent with models predicting a blunt HP. Variations are observed in the currents observed in the VLISM; roll data from this region clearly show the plasma instrument observes the interstellar plasma and may be consistent with larger than expected VLISM temperatures near the HP

    Identification and Overexpression of a Knotted1-Like Transcription Factor in Switchgrass (Panicum virgatum L.) for Lignocellulosic Feedstock Improvement

    Get PDF
    High biomass production and wide adaptation has made switchgrass (Panicum virgatum L.) an important candidate lignocellulosic bioenergy crop. One major limitation of this and other lignocellulosic feedstocks is the recalcitrance of complex carbohydrates to hydrolysis for conversion to biofuels. Lignin is the major contributor to recalcitrance as it limits the accessibility of cell wall carbohydrates to enzymatic breakdown into fermentable sugars. Therefore, genetic manipulation of the lignin biosynthesis pathway is one strategy to reduce recalcitrance. Here, we identified a switchgrass Knotted1 transcription factor, PvKN1, with the aim of genetically engineering switchgrass for reduced biomass recalcitrance for biofuel production. Gene expression of the endogenousPvKN1 gene was observed to be highest in young inflorescences and stems. Ectopic overexpression of PvKN1 in switchgrass altered growth, especially in early developmental stages. Transgenic lines had reduced expression of most lignin biosynthetic genes accompanied by a reduction in lignin content suggesting the involvement of PvKN1 in the broad regulation of the lignin biosynthesis pathway. Moreover, the reduced expression of the Gibberellin 20-oxidase (GA20ox) gene in tandem with the increased expression of Gibberellin 2-oxidase (GA2ox) genes in transgenic PvKN1 lines suggest that PvKN1 may exert regulatory effects via modulation of GA signaling. Furthermore, overexpression of PvKN1 altered the expression of cellulose and hemicellulose biosynthetic genes and increased sugar release efficiency in transgenic lines. Our results demonstrated that switchgrass PvKN1 is a putative ortholog of maize KN1 that is linked to plant lignification and cell wall and development traits as a major regulatory gene. Therefore, targeted overexpression of PvKN1 in bioenergy feedstocks may provide one feasible strategy for reducing biomass recalcitrance and simultaneously improving plant growth characteristics

    Acceleration of Solar Wind Ions by Nearby Interplanetary Shocks: Comparison of Monte Carlo Simulations with Ulysses Observations

    Get PDF
    The most stringent test of theoretical models of the first-order Fermi mechanism at collisionless astrophysical shocks is a comparison of the theoretical predictions with observational data on particle populations. Such comparisons have yielded good agreement between observations at the quasi-parallel portion of the Earth's bow shock and three theoretical approaches, including Monte Carlo kinetic simulations. This paper extends such model testing to the realm of oblique interplanetary shocks: here observations of proton and alpha particle distributions made by the SWICS ion mass spectrometer on Ulysses at nearby interplanetary shocks are compared with test particle Monte Carlo simulation predictions of accelerated populations. The plasma parameters used in the simulation are obtained from measurements of solar wind particles and the magnetic field upstream of individual shocks. Good agreement between downstream spectral measurements and the simulation predictions are obtained for two shocks by allowing the the ratio of the mean-free scattering length to the ionic gyroradius, to vary in an optimization of the fit to the data. Generally small values of this ratio are obtained, corresponding to the case of strong scattering. The acceleration process appears to be roughly independent of the mass or charge of the species.Comment: 26 pages, 6 figures, AASTeX format, to appear in the Astrophysical Journal, February 20, 199

    On the Energy Dependence of Galactic Cosmic Ray Anisotropies in the Very Local Interstellar Medium

    Full text link
    We report on the energy dependence of galactic cosmic rays (GCRs) in the very local interstellar medium (VLISM) as measured by the Low Energy Charged Particle (LECP) instrument on the Voyager 1 (V1) spacecraft. The LECP instrument includes a dual-ended solid state detector particle telescope mechanically scanning through 360 deg across eight equally-spaced angular sectors. As reported previously, LECP measurements showed a dramatic increase in GCR intensities for all sectors of the >=211 MeV count rate (CH31) at the V1 heliopause (HP) crossing in 2012, however, since then the count rate data have demonstrated systematic episodes of intensity decrease for particles around 90{\deg} pitch angle. To shed light on the energy dependence of these GCR anisotropies over a wide range of energies, we use V1 LECP count rate and pulse height analyzer (PHA) data from >=211 MeV channel together with lower energy LECP channels. Our analysis shows that while GCR anisotropies are present over a wide range of energies, there is a decreasing trend in the amplitude of second-order anisotropy with increasing energy during anisotropy episodes. A stronger pitch-angle scattering at the higher velocities is argued as a potential cause for this energy dependence. A possible cause for this velocity dependence arising from weak rigidity dependence of the scattering mean free path and resulting velocity-dominated scattering rate is discussed. This interpretation is consistent with a recently reported lack of corresponding GCR electron anisotropies
    corecore