64 research outputs found

    Magnetic Resonance-Guided Stereotactic Body Radiotherapy of Liver Tumors: Initial Clinical Experience and Patient-Reported Outcomes

    Get PDF
    Purpose/ObjectiveStereotactic body radiation therapy (SBRT) has emerged as a valid treatment alternative for non-resectable liver metastases or hepatocellular carcinomas (HCC). Magnetic resonance (MR) guided SBRT has a high potential of further improving treatment quality, allowing for higher, tumoricidal irradiation doses whilst simultaneously sparing organs at risk. However, data on treatment outcome and patient acceptance is still limited.Material/MethodsWe performed a subgroup analysis of an ongoing prospective observational study comprising patients with liver metastases or HCC. Patients were treated with ablative MR-guided SBRT at the MRIdian Linac in the Department of Radiation Oncology at Heidelberg University Hospital between January 2019 and February 2020. Local control (LC) and overall survival (OS) analysis was performed using the Kaplan–Meier method. An in-house designed patient-reported outcome questionnaire was used to measure patients’ experience with the MR-Linac treatment. Toxicity was evaluated using the Common Terminology Criteria for Adverse Events (CTCAE v. 5.0).ResultsTwenty patients (with n = 18 metastases; n = 2 HCC) received MR-guided SBRT for in total 26 malignant liver lesions. Median biologically effective dose (BED at α/β = 10) was 105.0 Gy (range: 67.2–112.5 Gy) and median planning target volume was 57.20 ml (range: 17.4–445.0 ml). Median treatment time was 39.0 min (range: 26.0–67.0 min). At 1-year, LC was 88.1% and OS was 84.0%. Grade I° gastrointestinal toxicity °occurred in 30.0% and grade II° in 5.0% of the patients with no grade III° or higher toxicity. Overall treatment experience was rated positively, with items scoring MR-Linac staff’s performance and items concerning the breath hold process being among the top positively rated elements. Worst scored items were treatment duration, positioning and low temperature.ConclusionMR-guided SBRT of liver tumors is a well-tolerated and well-accepted treatment modality. Initial results are promising with excellent local control and only mildest toxicity. However, prospective studies are warranted to truly assess the potential of MR-guided liver SBRT and to identify which patients profit most from this new versatile technology

    PSMA-PET based radiotherapy: a review of initial experiences, survey on current practice and future perspectives

    Get PDF
    Gallium prostate specific membrane antigen (PSMA) ligand positron emission tomography (PET) is an increasingly used imaging modality in prostate cancer, especially in cases of tumor recurrence after curative intended therapy. Owed to the novelty of the PSMA-targeting tracers, clinical evidence on the value of PSMA-PET is moderate but rapidly increasing. State of the art imaging is pivotal for radiotherapy treatment planning as it may affect dose prescription, target delineation and use of concomitant therapy. This review summarizes the evidence on PSMA-PET imaging from a radiation oncologist’s point of view. Additionally a short survey containing twelve examples of patients and 6 additional questions was performed in seven mayor academic centers with experience in PSMA ligand imaging and the findings are reported here

    Does ethanol act preferentially via selected brain GABAA receptor subtypes? the current evidence is ambiguous

    Get PDF
    In rodent models, γ-aminobutyric acid A (GABAA) receptors with the α6 and δ subunits, expressed in the cerebellar and cochlear nucleus granule cells, have been linked to ethanol sensitivity and voluntary ethanol drinking. Here, we review the findings. When considering both in vivo contributions and data on cloned receptors, the evidence for direct participation of the α6-containing receptors to increased ethanol sensitivity is poor. The α6 subunit-knockout mouse lines do not have any changed sensitivity to ethanol, although these mice do display increased benzodiazepine sensitivity. However, in general the compensations occurring in knockout mice (regardless of which particular gene is knocked out) tend to fog interpretations of drug actions at the systems level. For example, the α6 knockout mice have increased TASK-1 channel expression in their cerebellar granule cells, which could influence sensitivity to ethanol in the opposite direction to that obtained with the α6 knockouts. Indeed, TASK-1 knockout mice are more impaired than wild types in motor skills when given ethanol; this might explain why GABAA receptor α6 knockout mice have unchanged ethanol sensitivities. As an alternative to studying knockout mice, we examined the claimed δ subunit-dependent/γ2 subunit-independent ethanol/[3H]Ro 15-4513 binding sites on GABAA receptors. We looked at [3H]Ro 15-4513 binding in HEK 293 cell membrane homogenates containing rat recombinant α6/4β3δ receptors and in mouse brain sections. Specific high-affinity [3H]Ro 15-4513 binding could not be detected under any conditions to the recombinant receptors or to the cerebellar sections of γ2(F77I) knockin mice, nor was this binding to brain sections of wild-type C57BL/6 inhibited by 1–100 mM ethanol. Since ethanol may act on many receptor and channel protein targets in neuronal membranes, we consider the α6 (and α4) subunit-containing GABAA receptors unlikely to be directly responsible for any major part of ethanol's actions. Therefore, we finish the review by discussing more generally alcohol and GABAA receptors and by suggesting potential future directions for this research.This study and review was supported by the Finnish Foundation for Alcohol Studies, the Academy of Finland and the Sigrid Juselius Foundation.Peer reviewe

    Building an Optical Free-Electron Laser in the Traveling-Wave Thomson-Scattering Geometry

    Get PDF
    We show how optical free-electron lasers and enhanced incoherent Thomson scattering radiation sources can be realized with Traveling-Wave Thomson-Scattering (TWTS) today. Emphasis is put on the realization of optical free-electron lasers (OFELs) with existing state-of-the-art technology for laser systems and electron accelerators. The conceptual design of optical setups for the preparation of laser pulses suitable for TWTS OFELs and enhanced Thomson sources is presented. We further provide expressions to estimate the acceptable alignment tolerances of optical components for TWTS OFEL operation. Examples of TWTS OFELs radiating at 100 nm, 13.5 nm and 1.5 Å as well as an incoherent source producing 30 keV photons highlight the feasibility of the concept and detail the procedure to determine the optical components parameters of a TWTS setup

    DNA-Methylome based Tumor Hypoxia Classifier Identifies HPV-negative Head & Neck Cancer Patients at Risk for Locoregional Recurrence After Primary Radiochemotherapy

    Full text link
    BACKGROUND Tumor hypoxia is a paradigmatic negative prognosticator of treatment resistance in Head and Neck Squamous Cell Carcinoma (HNSCC). The lack of robust and reliable hypoxia classifiers limits the adaptation of stratified therapies. We hypothesized that the tumor DNA methylation landscape might indicate epigenetic reprogramming induced by chronic intratumoral hypoxia. METHODS A DNA methylome-based tumor hypoxia classifier (Hypoxia-M) was trained in the TCGA-HNSCC cohort based on matched assignments using gene expression-based signatures of hypoxia (Hypoxia-GES). Hypoxia-M was validated in a multicenter DKTK-ROG trial consisting of Human Papilloma Virus (HPV)-negative HNSCC patients treated with primary radiochemotherapy (RCHT). RESULTS While hypoxia-GSEs failed to stratify patients in the DKTK-ROG, Hypoxia-M was independently prognostic for local recurrence (LR, HR=4.3, p=0.001) and overall survival (OS, HR=2.34, p=0.03) but not distant metastasis (DM) after RCHT in the both cohorts. Hypoxia-M status was inversely associated with CD8 T-cells infiltration in both cohorts. Hypoxia-M was further prognostic in the TCGA-PanCancer cohort (HR=1.83, p=0.04), underscoring the breadth of this classifier for predicting tumor hypoxia status. CONCLUSIONS Our findings highlight an unexplored avenue for DNA Methylation-based classifiers as biomarkers of tumoral hypoxia for identifying high-risk features in patients with HNSCC tumors. TRIAL REGISTRATION Retrospective observational study from the German Cancer Consortium (DKTK-ROG), not interventional

    Discontinuation of BRAF/MEK-Directed Targeted Therapy after Complete Remission of Metastatic Melanoma—A Retrospective Multicenter ADOReg Study

    Get PDF
    The advent of BRAF/MEK inhibitors (BRAFi/MEKi) has significantly improved progressionfree (PFS) and overall survival (OS) for patients with advanced BRAF-V600-mutant melanoma. Long-term survivors have been identified particularly among patients with a complete response (CR) to BRAF/MEK-directed targeted therapy (TT). However, it remains unclear which patients who achieved a CR maintain a durable response and whether treatment cessation might be a safe option in these patients. Therefore, this study investigated the impact of treatment cessation on the clinical course of patients with a CR upon BRAF/MEK-directed-TT. We retrospectively selected patients with BRAF-V600-mutant advanced non-resectable melanoma who had been treated with BRAFi ± MEKi therapy and achieved a CR upon treatment out of the multicentric skin cancer registry ADOReg. Data on baseline patient characteristics, duration of TT, treatment cessation, tumor progression (TP) and response to second-line treatments were collected and analyzed. Of 461 patients who received BRAF/MEK-directed TT 37 achieved a CR. TP after initial CR was observed in 22 patients (60%) mainly affecting patients who discontinued TT (n = 22/26), whereas all patients with ongoing TT (n = 11) maintained their CR. Accordingly, patients who discontinued TT had a higher risk of TP compared to patients with ongoing treatment (p < 0.001). However, our data also show that patients who received TT for more than 16 months and who discontinued TT for other reasons than TP or toxicity did not have a shorter PFS compared to patients with ongoing treatment. Response rates to second-line treatment being initiated in 21 patients, varied between 27% for immune-checkpoint inhibitors (ICI) and 60% for BRAFi/MEKi rechallenge. In summary, we identified a considerable number of patients who achieved a CR upon BRAF/MEK-directed TT in this contemporary realworld cohort of patients with BRAF-V600-mutant melanoma. Sustained PFS was not restricted to ongoing TT but was also found in patients who discontinued TT

    Prognosis of breast cancer molecular subtypes in routine clinical care: A large prospective cohort study

    Get PDF
    Background: In Germany, most breast cancer patients are treated in specialized breast cancer units (BCU), which are certified, and routinely monitored. Herein, we evaluate up-to-date oncological outcome of breast cancer (BC) molecular subtypes in routine clinical care of a specialized BCU. Methods: The study was a prospectively single-center cohort study of 4102 female cases with primary, unilateral, non-metastatic breast cancer treated between 01 January 2003 and 31 December 2012. The five routinely used molecular subtypes (Luminal A-like, Luminal B/HER2 negative-like, Luminal B/HER2 positive-like, HER2-type, Triple negative) were analyzed. The median follow-up time of the whole cohort was 55 months. We calculated estimates for local control rate (LCR), disease-free survival (DFS), distant disease-free survival (DDFS), overall survival (OS), and relative overall survival (ROS). Results: Luminal A-like tumors were the most frequent (44.7%) and showed the best outcome with LCR of 99.1% (95% CI 98.5; 99.7), OS of 95.1% (95% CI 93.7; 96.5), and ROS of 100.0% (95% CI 98.5; 101.5). Triple negative tumors (12.3%) presented the poorest outcome with LCR of 89.6% (95% CI 85.8; 93.4), OS of 78.5% (95% CI 73.8; 83.3), and ROS of 80.1% (95% CI 73.8; 83.2). Conclusions: Patients with a favorable subtype can expect an OS above 95% and an LCR of almost 100% over 5 years. On the other hand the outcome of patients with HER2 and Triple negative subtypes remains poor, thus necessitating more intensified research and care

    Deep-learning-based synthesis of post-contrast T1-weighted MRI for tumour response assessment in neuro-oncology:a multicentre, retrospective cohort study

    Get PDF
    International audienceBackground Gadolinium-based contrast agents (GBCAs) are widely used to enhance tissue contrast during MRI scans and play a crucial role in the management of patients with cancer. However, studies have shown gadolinium deposition in the brain after repeated GBCA administration with yet unknown clinical significance. We aimed to assess the feasibility and diagnostic value of synthetic post-contrast T1-weighted MRI generated from pre-contrast MRI sequences through deep convolutional neural networks (dCNN) for tumour response assessment in neuro-oncology. Methods In this multicentre, retrospective cohort study, we used MRI examinations to train and validate a dCNN for synthesising post-contrast T1-weighted sequences from pre-contrast T1-weighted, T2-weighted, and fluid-attenuated inversion recovery sequences. We used MRI scans with availability of these sequences from 775 patients with glioblastoma treated at Heidelberg University Hospital, Heidelberg, Germany (775 MRI examinations); 260 patients who participated in the phase 2 CORE trial (1083 MRI examinations, 59 institutions); and 505 patients who participated in the phase 3 CENTRIC trial (3147 MRI examinations, 149 institutions). Separate training runs to rank the importance of individual sequences and (for a subset) diffusion-weighted imaging were conducted. Independent testing was performed on MRI data from the phase 2 and phase 3 EORTC-26101 trial (521 patients, 1924 MRI examinations, 32 institutions). The similarity between synthetic and true contrast enhancement on post-contrast T1-weighted MRI was quantified using the structural similarity index measure (SSIM). Automated tumour segmentation and volumetric tumour response assessment based on synthetic versus true post-contrast T1-weighted sequences was performed in the EORTC-26101 trial and agreement was assessed with Kaplan-Meier plots. Interpretation Generating synthetic post-contrast T1-weighted MRI from pre-contrast MRI using dCNN is feasible and quantification of the contrast-enhancing tumour burden from synthetic post-contrast T1-weighted MRI allows assessment of the patient's response to treatment with no significant difference by comparison with true post-contrast T1-weighted sequences with administration of GBCAs. This finding could guide the application of dCNN in radiology to potentially reduce the necessity of GBCA administration
    corecore